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Abstract

This thesis addresses the challenge of prognosis, in terms of survival prediction, for patients with

Glioblastoma Multiforme brain tumors. Glioblastoma is the most malignant brain tumor, which has

a median survival time of no more than a year. Accurate assessment of prognostic factors is critical

in deciding amongst different treatment options and in designing stratified clinical trials. This thesis

is motivated by two observations. Firstly, clinicians often refer to properties of glioblastoma tu-

mors based on magnetic resonance images when assessing prognosis. However, clinical data, along

with histological and most recently, molecular and gene expression data, have been more widely

and systematically studied and used in prognosis assessment than image based information. Sec-

ondly, patient survival times are often used along with clinical data to conduct population studies

on brain tumor patients. Recursive Partitioning Analysis is typically used in these population stud-

ies. However, researchers validate and assess the predictive power of these models by measuring

the statistical association between survival groups and survival times. In this thesis, we propose a

learning approach that uses historical training data to produce a system that predicts patient survival.

We introduce a classification model for predicting patient survival class, which uses texture based

features extracted from magnetic resonance images as well as other patient properties. Our progno-

sis approach is novel as it is the first to use image-extracted textural characteristics of glioblastoma

scans, in a classification model whose accuracy can be reliably validated by cross validation. We

show that our approach is a promising new direction for prognosis in brain tumor patients.
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Chapter 1

Introduction

This thesis addresses the task of learning to predict the survival time of glioblastoma patients, using

various features, including textural information extracted from their magnetic resonance (MR) im-

ages. We use MR images of patients diagnosed with glioblastoma, whose survival status is partially

known. We develop a framework that extracts textural information from the MR images and uses

them to predict the patient’s survival outcome. Our goal is to show that textural properties about the

glioblastoma tumor and the brain are predictive of patient survival outcome.

1.1 Motivation

Glioblastomas are the most difficult brain tumors to treat. Despite decades of research, advanced

and aggressive treatments, scientist and clinicians still cannot treat glioblastomas very effectively.

Hence, prognosis of glioblastomas is generally dismal. Currently, the most common methods used

to predict prognosis are based on survival analysis of clinical or pathological features. However,

the predictive accuracy of these methods is limited. It is well known that older patients who are

diagnosed with glioblastomas have shorter survival times. But how much longer will old patient A

live compared to old patient B? And why do some younger patients defy the trend and have short

survival times? There are obviously more factors that influence survival of which we are unaware.

Therefore, it is worth exploring other options and why not start by systematically analyzing the

very appearances of the glioblastoma tumors on medical images? The intrinsic appearance of a

glioblastoma on a magnetic resonance image should say something about how well-behaved or

aggressive the tumor is or will be in the not so distant future. A very useful way to characterize the

appearance of the tumors on MRI is to analyze their texture. When an oncologist describes a tumor

from its MR image, he/she may talk about the irregularity of the tumor borders or heterogeneity of

the tumor itself. He/she may describe the brain tissue surrounding the tumor as compressed with

a smudged appearance. It is possible to measure these intuitive properties using texture analysis

and see how they correlate with how a glioblastoma behaves over the course of time leading to the

patient’s inevitable death. We take up the challenge of prognosis for glioblastomas using textural
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information.

Others have already applied textural information from medical images to help prognose other

diseases. Yogesan et al. apply texture extraction methods to light microscopy images of nuclei to

classify prostate cancer patients into two prognostic groups; good versus poor [66]. Geisler et al.

apply texture analysis to optical images to determine predictive factors in prognosis of endometrial

cancer [17]. Weyn et al. apply texture analysis on histological samples for survival prediction of

malignant mesothelioma [63]. There have been no attempts, as of yet, to apply textural information

towards prognosis of glioblastomas. Most texture analysis frameworks developed regarding brain

tumors deal with tumor segmentation or tissue characterization. Therefore, our work is the beginning

of a new direction in the battle with glioblastomas. The main challenge is that there is no benchmark

to compare our prediction model with. The medical community mainly uses prediction models for

designing stratified clinical trials and thus has a different understanding of survival prediction, which

is not compatible with our definition of prediction. Therefore, while prediction models may not be

meaningful at this time, our survival prediction model demonstrates that textural information from

MRI are of prognostic value and can be used, along with other prognostic factors, for survival

prediction and also to help in stratification of clinical trials.

1.2 Thesis Outline

In Chapter 2, we first introduce glioblstoma multiformes and describe their biological and appearance-

based properties (Section 2.1). Then we discuss the common approaches to the prognosis of glioblas-

tomas in the medical community (Section 2.1.1 and Section 2.2). Finally, we discuss what consti-

tutes texture, common approaches to texture analysis and their application on magnetic resonance

images (Section 2.3).

In Chapter 3, we motivate our survival prediction framework (Section 3.1). Then, before we

describe it in detail, we will give an overview of the full framework (Section 3.2) and introduce the

main ideas behind it (Section 3.2.1, Section 3.2.2 and Section 3.2.3). Then we will describe our

MRI data that we will be using to test the survival predictability of our framework (Section 3.3).

In Chapter 4, we describe our framework in detail, introducing the methods that we use in texture

extraction (Section 4.1), and how we combine the texture features (Section 4.2).

In Chapter 5, we explain our experimental setup (Section 5.1 and Section 5.2) and discuss the

results (Section 5.3, Section 5.4 and Section 5.5). Finally, we conclude the thesis in Chapter 6, with

discussing challenges we encountered and possible future work (Section 6.1), and then summarizing

our contribution and ending with some concluding remarks(Section 6.2).

2



Chapter 2

Background and Related Work

Prognosis is the prospect of survival and recovery from a disease as anticipated from the usual course

of that disease or indicated by special features of the case [1]. In clinical trials for new treatments,

assessment of prognosis is used to help stratify patients into homogeneous risk groups based on

prognostic factors. Therefore, prognosis assessment is essential in understanding the effects of new

treatments. There are different ways to conduct prognostic analysis. Statistical surveys of popula-

tions help clinicians estimate a likely outcome for a patient based on groups of other patients in the

population with common clinical and diagnostic characteristics. Some studies categorize patients

based on survival rates. In other words, patients in a population are grouped based on the number of

years they survived after being diagnosed with the disease. Another way to characterize groups of

patients is to refer to progression-free survival, which is time, after treatment, one lives without the

disease recurring or progressing any further. Such population studies are designed to help in strat-

ification of clinical trials and not for survival prediction. Also, since every patient is unique with

different responses to the disease and the consequent treatments, clinicians cannot accurately predict

individual outcomes based on population studies, as such populations based on a few diagnostic and

prognostic characteristics are still quite heterogeneous. A patient’s prognosis may even change over

time based on their responses to treatment. Moreover, statistical surveys based on populations may

also change depending on what populations and in what span of time the surveys were conducted

and which clinical parameters were included.

Other than population surveys, there are also specific markers, discovered in the past decade or

so that can help distinguish subclasses of a certain disease based on their correlation with the disease

outcome. Genetic mutations in tumors are one such example. The prognostic value of these markers

becomes established when their presence is associated with better or worse prognosis. Some ge-

netic mutations, or combinations of them, present in a tumor can lead to better responses to certain

treatments, and thus lead to better prognosis. In this thesis we address the problem of prognosis in

terms of survival in a certain class of high grade brain tumors called glioblastoma multiforme. In

the following sections, we present some background information on these tumors on their biological

characteristics and the challenges they present to clinicians and researchers. Then we discuss prog-
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nostic factors used by clinicians and in research studies. Such factors include populations surveys

and molecular and genetic markers, which are described in more detail.

2.1 Glioblastoma Multiforme

Glioblastoma Multiforme (or just glioblastoma) is a malignant type of a glioma brain tumor, which

occurs in people of all age groups, but is mostly prevalent in ages 65 to 75 [49]. Gliomas grow

from glial cells, which support nerve cells in the central nervous system by providing nutrition and

protection. Glioblastomas are the most common gliomas and the most aggressive brain tumors in

general. These tumors typically rise in the deep white matter but soon infiltrate the gray matter and

other structures as well [49] . They are highly invasive to the neighboring tissues. A glioblastoma

often infiltrates the adjacent hemisphere of the brain, invading through the corpus callosum, which

connects the two cerebral hemispheres. When this happens, it produces a symmetric appearance,

which resembles a butterfly and so is commonly referred to as a butterfly glioma [49]. The growth

rate of glioblastomas is so high that they tend to deplete their blood supply resulting in central

necrotic regions, which contain of only dead cells. In many cases, there is also a significant amount

of fluid accumulation, called vasogenic edema, around the tumor. A high growth rate together with

the surrounding edema can cause mass effect, compressing the brain tissue against the cranium (i.e.

skull) leading to a condition called intracranial pressure. If not treated through surgical removal of

the tumor mass, the patient will soon die because the increased mass effect limits the blood supply

to the neighboring brain tissue.

The four-tiered grading system of the World Health Organization (WHO) categorizes glioblas-

tomas as grade IV gliomas, the most malignant, based on pathological, clinical and prognostic

characteristics[33]. These tumors are pathologically composed of poorly differentiated (i.e. anaplas-

tic) and heterogeneous cancerous cells. Well-differentiated cells are ones that grow and specialize

normally in healthy tissues. But in glioblastomas, the cells have lost any resemblance to their orig-

inating normal and specialized cells. This loss of differentiation is called anaplasia and is indica-

tive of biological aggressiveness [39]. According to the WHO grading system, the most common

histopathological characteristics of glioblastomas are the following [49, 34]:

Cellular pleomorphism is high variability in size and shape of tumor cells. Dense cellularity

is high density of cells in tumor tissue. Variable mitotic activity, which is the degree of population

cell growth, paired with high cellularity and cellular pleomorphism are indicative of abnormally

high and unregulated rate of cell growth and division in glioblastomas. Neovascularity, which

is the presence of blood vessels in tissues that do not normally contain them, is also prevalent in

glioblastomas. But, the most distinctive characteristic of glioblastomas is the microscopic presence

of regions with pseudopalisading necrosis, which are regions of dead cells surrounded by a dense

ring of cancerous cells.

Glioblastomas are classified into two subtypes based on their histopathological grading when
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they first occur. Primary glioblastomas, seen mostly in older patients, are malignant and aggressive

from the point they are diagnosed without any previous history of lower grade gliomas. Secondary

glioblastomas are initially diagnosed as lower grade and less malignant gliomas. But they return as

malignant and highly invasive tumors after 5 to 10 years of the original diagnosis and subsequent

treatments [34]. The genetic profile, in terms of mutations, of these two subtypes is somewhat

different and there has been debate on whether they should be treated as separate diseases [34]. But

once the patient is diagnosed with a glioblastoma, regardless of the clinical history, the degree of

aggressiveness and malignancy is the same for both subtypes.

The mutation profile in the genetic makeup of glioblastomas is very complex. There are always

a variety of genetic abnormalities present at the same time [49]. Oncogenes are mutated genes that

can turn a normal cell to a cancerous one. Tumor-suppressor genes are ones that control the normal

growth of cells and prevent abnormal growth. Both genetic mutations caused by oncogenes and

malfunctioning of tumor-suppressor genes such as p53 can be present in glioblastomas. Malfunc-

tioning of tumor-suppressor genes on chromosome 10 is prevalent in cases of glioblastomas and not

very common in other forms of cancer [49]. Abnormally high expression or mutation of epidermal

growth factor receptor, which is normally involved in promoting healthy cell growth and division, is

also present in many cases of primary glioblastomas [49, 62].

Magnetic Resonance Imaging (MRI) is a common medical imaging technology used to visual-

ize a patient’s brain. The most common MRI modalities used to assess glioblastomas are FLuid

Attenuated Inversion Recovery (FLAIR), T1 and T2-weighted modalities. T1-weighted modalities

highlight fat tissue in the brain and FLAIR and T2-weighted modalities highlight tissue with higher

concentration of water. T1-weighted scans are usually followed by post-contrast T1-weighted scans

taken after the patient is injected with a contrast agent, which is usually gadolinium. The contrast

agent enables clinicians to locate areas of contrast enhancement on the brain scans, which is an in-

creased T1 signal intensity in post-contrast T1-weighted scans. Contrast enhancement is indicative

of disruption in the blood-brain barrier. This abnormality is typically seen in brain tumors and other

brain diseases. The most common appearance characteristic of a glioblastoma on MRI is a hetero-

geneous mass with central regions of necrosis or hemorrhage and non-uniform borders surrounded

by extensive vasogenic edema [49] (Figure 2.1). Necrosis is displayed on MRI as a region of low

T1 signal intensity (dark) and high T2 and FLAIR signal (bright), located within the tumor, and is

typically surrounded by a contrast enhancing ring. This enhancing ring, as seen on post-contrast T1

scans, is typically thick and has a wavy and irregular appearance with a shaggy inner margin [57].

The enhancing rim is usually thicker on the side of the tumor closer to the cortical surface of the

brain, rather than the deeper white matter [57]. The necrotic region itself is not contrast enhanc-

ing. The enhancing ring around the necrotic region has the highest concentration of neovascularity,

which is an indication of blood-brain barrier disruption [57], which is the reason it enhances, as

mentioned earlier. Edema is displayed on MRI as a region of high T2 and FLAIR signal intensity
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Figure 2.1: MRI scans of a glioblastoma tumor. A T1-weighted image, the T1-weighted image
after the injection of contrast agent, a T2-weighted image and the corresponding FLAIR image.
Enhancing rim can be seen in T1-contrast. Edema appears dark in T1 and T1-contrast, and bright in
FLAIR and T2. Edema appears as bright as the ventricles in T2 but in FLAIR, the ventricles appear
dark because they contain free water. Necrosis appears less bright in T1 and T1-contrast, and bright
in FLAIR and T2.

(bright) and low T1 signal (dark) (Figure 2.1). The high T2 signal of vasogenic edema is at the same

level of intensity as the T2 signal of the fluid filling the ventricles. However, the ventricles appear

dark in FLAIR images because they contain free moving water, which has a low signal on FLAIR

images. Mass effect can be seen on FLAIR, T1 and T2-weighted scans as areas where the tissue

adjacent to the tumor has been deformed, smudged or pushed to one side as a result of pressure

from the edema. In general, edema, border definition and tumor heterogeneity are best observed on

FLAIR and T2-weighted images.

2.1.1 Prognosis

Due to their high degrees of malignancy, glioblastomas cannot be cured. Instead, they are treated to

prolong survival of the patients but with very limited success. Treatments typically include combi-

nations of surgery, radiotherapy and chemotherapy [62]. The high invasive and aggressive nature of

glioblastomas makes treatment very difficult. Additionally, because these heterogeneous tumors are
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composed of a mixture of different tumor cell types, treatments may destroy certain types of tumor

cells but allow other types to survive and result in recurrence of the tumor. As a result, glioblastomas

are highly recurrent tumors. As these tumors return, they become more devastating to the patient,

as they infiltrate and destroy more brain tissue, eventually leading to death. Researchers have dis-

covered many prognostic factors pertaining to survival in glioblastoma patients. These factors range

from clinical data to molecular, genetic, histopathological and image-based properties. However,

some of these findings appear to be conflicting and others require more confirmation from other

sources. For instance, the presence of necrosis in glioblastoma with an oligodendroglioma compo-

nent (a lower grade glioma) is associated with poor prognosis. But it is debatable whether these

tumors, in general, have a more favorable prognosis than standard glioblastomas [33]. Pope et al.

, on the other hand, report that the existence of a large oligodendroglioma component is associated

with favorable prognosis [46].

The most widely confirmed predictive factors for prognosis are the age at which the patient is

diagnosed, and the Karnofsky Performance Status (KPS) test [62]. The purpose of the KPS test is

to assess the patient’s general health and is a score that is a multiple of 10 from 0 (death) to 100

(full health). Older glioblastoma patients typically have very poor prognosis. Additionally, they are

less tolerant to certain critical treatments than younger patients. Younger age, moreover, is typically

associated with more favorable prognosis. According to statistical reports from the Neuro-Oncology

program at the University of California at Los Angeles, the median survival times for young glioblas-

toma patients in the age ranges of 20-35 and 35-50 are 971 and 714 days respectively [60]. This is

in contrast with the much shorter median survival times of older patients in the age ranges 50-70 and

70-100, which are 461 and 362 days respectively [60].

Regardless of age, however, the prognosis for glioblastoma is poor despite two decades of re-

search and clinical trials and the availability of aggressive treatments. The reported median survivals

for glioblastoma patients of all ages range from 9, 12 to 15 months at most [34, 39, 42, 62, 28]. De-

spite low rates of survival, there is a small percentage of glioblastoma patients with mysteriously

long survival times. Krex et al. analyzed the largest group of long-term survival patients to un-

cover the prognosis factors that lead to such long survivals [28]. Their study confirms the general

belief that younger age at diagnosis and high KPS scores are the most important factors indicative

of a favorable prognosis. They also found that a histological subtype of glioblastoma called giant

cell glioblastoma is over-represented in their group of long-term survival patients. Their study also

confirms a major finding that MGMT methylation is strongly associated with long term survival.

Martinez et al. also conducted a long-term survival study and confirmed the prognostic power of

MGMT methylation in glioblastomas [36]. MGMT is a DNA-repair gene whose high level of activ-

ity in cancer cells is believed to cause resistance to chemotherapy. Deactivation of MGMT through

methylation, which is a type of chemical DNA modification, reduces DNA repair in cancer cells.

Methylation of MGMT is more prevalent among patients with long-term survivals of 3 or more
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years [36]. Hegi et al. have in fact used statistical studies to demonstrate that, regardless of type

of treatment received, glioblastoma patients with methylated MGMT survive significantly longer

than patients with unmethylated MGMT [22]. Additionally, patients with methylated MGMT, who

receive both radiotherapy and chemotherapy with agent temozolomide, survive even longer than

patients with this genetic advantage but without receiving both treatments simultaneously.

Tumors are genetically complex and highly individualized per patient. Population and clinical

studies are incapable of bringing these highly individual genetic characteristics to light [39]. Also,

understanding the complex gene expression patterns in tumors can provide more information on the

underlying biology than do individual genes in identifying molecular markers for prognosis [40].

Recently, there have been many studies based on microarray analysis to uncover complex genetic

prognostic factors in glioblastoma [41, 16, 7, 50, 65, 5, 30]. Microarray analysis studies thousands

of gene expressions simultaneously, which can provide new prognostic information by helping re-

searchers distinguish between morphologically and pathologically similar glioblastomas. Pattern

recognition techniques applied to microarray analysis help better understand the complex interplay

of genes in glioblastoma patients. We describe below how this has enabled researchers to find new

predictive markers associated with prognosis.

Nutt et al. use gene expression features to classify high grade gliomas (anaplastic oigoden-

droglioma versus glioblastomas) [41]. They found that survival correlation to gene-expression based

classification is stronger than to pathology-based classification. They identify 20 genes out of thou-

sands, whose expression strongly correlates with survival. Freije et al. use gene expression features

to classify high grade glioma patients into separate groups based on patient survivals[16]. They use

hierarchical clustering to group tumors based on over-expressed genes. They distinguish 44 genes

out of thousands, based on which 4 subtypes of high grade gliomas are determined. These subtypes

highly correlate with patient survival times. Among the groups with the poorest survival times, the

genetic profiles of the tumors were defined by an over-expression of a set of extra-cellular matrix

related genes. This, the authors reason, could be a cause of extensive local invasion, which leads

to poorer prognosis for patients with these tumors. The most favorable prognosis was associated

with glioblastomas with over-expressed genes that are involved in neurogenesis (neuronal develop-

ment). The authors use the name, ProNeural, for this group. The authors of this study later make

an intriguing discovery in a more recent study, that this subtype of glioblastomas is most commonly

diagnosed in younger patients [30]. In fact, they demonstrate that the genetic profile of ProNeural

glioblastomas is a stronger predictor of outcome than age. They moreover demonstrate that among

patients with ProNeural glioblastomas, age is not a strong predictor of survival and that among the

non-ProNeural patients, even the young patients had short survival times. They conclude that the

survival advantage of younger patients is due to the more prevalent ProNeural types of glioblastomas

among them.

Rich et al. use gene-expression profiling to identify three genes that are responsible for cellu-
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lar motility and thus tumor migration, leading to poor patient survivals [50]. Yamanaka et al. use

multivariate analysis on microarrays to identify 21 genes whose expression can predict patient sur-

vival [65]. Carlson et al. discover that when there is little to no amount of edema, the expression

of Vascular Endothelial Growth Factor (VEFG) is related to patient survival, with high expression

levels associated with low survival rates [5]. VEGF refers to a group of signaling proteins involved

in angiogenesis, the growth of blood vessels from existing ones. On the other hand, with extensive

amount of edema present, the overexpression of the NPTX2 gene was associated with low survival

rates [5]. According to Chakravarti et al. , the activation of the phosphatidylinositol 3-kinase (PI3K)

pathway in glioblastomas is believed to lead to poor response to radiation and thus to a shorter

survival time in patients [7]. The PI3K is involved in the regulation of cell survival among other

cellular functions. Members of this pathway are known to suppress apoptosis, which is a form of

cell “suicide” that triggers when a cell becomes abnormal. This lack of programmed cell death in

cancerous cells makes this type of genetic mutation challenging to treat.

MRI is routinely used in diagnosing brain tumors. We believe that effectively incorporating

image-based features along with other prognostic features can help in prognosis. There have been

studies that link appearance characteristics of glioblastomas to patient survivals. In these studies,

experts visually inspect MRI scans and manually assign scores to pre-defined features. For exam-

ple, the severity of vasogenic edema may receive a score of 0 for no edema and a score of 2 for an

extensive amount of edema causing significant mass effect. Hammoud et al. found that the amount

of tumor necrosis on pre-surgery images is the strongest prognostic factor in a group of patients with

median age of 50 [20]. Hence, they found that smaller necrotic region is associated with favorable

prognosis. They also found that minimal contrast enhancement is associated with favorable progno-

sis. The prognostic value of necrosis was confirmed by Pierallini et al. [44], who found that low

necrosis to tumor mass ratio is associated with favorable prognosis. This finding is in accordance

with the general understanding that the presence of extensive necrosis is indicative of high aggres-

sion. Pope et al. discovered that presence of non-enhancing tumor and extent of edema are of high

prognostic value [46]. A non-enhancing tumor is one that has a region of solid cancerous tissue

that does not enhance on a post-contrast T1 scan. These non-enhancing regions show bright on T2-

weighted scans, but with a lower T2 signal than edema. According to the authors, the presence of a

non-enhancing tumor is associated with favorable prognosis especially in older patients. They also

confirm the belief that the presence of an increased amount of edema is indicative of poor prognosis.

Multifocality and the presence of satellites were found to be of some prognostic value when coupled

with other factors (multifocality refers to the existence of lesions that are not connected to the main

lesion or its surrounding edema and satellites are lesions that are not connected to the main tumor

lesion but within the surrounding abnormality or edema). They show through multivariate analysis

that glioblastoma patients with non-enhancing tumors but without edema, satellites or multifocal-

ity had significantly more favorable prognosis than patients without non-enhancing tumors but with
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edema and either of satellites or multifocality. They also find that the existence of a large oligoden-

droglioma (a lower grade glioma) component within the glioblastoma is associated with favorable

prognosis [46].

2.2 Population Studies

What we have discussed in the previous section is by no means an exhaustive survey of all the recent

findings in gene-expression profiling pertaining to prognosis of glioblastomas. But it demonstrates

the immense interest developed recently in the use of gene-expression analysis to guide prognosis

and treatment in glioblastomas and cancer in general. However, despite numerous studies based on

gene-expression profiling, clinicians still rely on statistical studies based on populations as the main

practical tool in prognosis of glioblastomas. Many studies based on gene-expression profiling are

complex and not quite practical for use in prognosis. The concept of profiling gene-expressions is

relatively new in prognosis of glioblastomas and thus many of the findings are not widely confirmed

in the literature. Moreover, the studies are mostly based on smaller datasets of patients, a factor

which reduces their level of reliability. Population studies, on the other hand, are based on much

simpler prognostic factors and are conducted on much larger datasets.

The study of patient survival in populations using statistical tools gives rise to survival analysis

in biomedical research. In this context, survival analysis is concerned with survival data, which

contains information about patients on time to a certain event. In the case of survival for glioblastoma

patients, the survival data contains, for each patient, the time from diagnosis to death or to the last

follow-up. What makes survival data distinct is the fact that the information on survival (whether

patient died and if so, the time of death) may not be complete for all patients in the data. Often, at

the time when data collection is complete, some patients are still alive due to longer survival times.

Also, patients in a clinical study do not all enter the study at the same time. Some patients may enter

the study closer to the end of the study and once data collection is complete, these patients may still

be alive. Data on patients whose time of death is not known (but the time of their last follow-up

is known) are called censored observations [12]. Due to the presence of censored observations in

survival analysis, specialized statistical tools have been developed, which have been consequently

used in the study of prognosis in glioblastomas.

Curran et al. originally used Recursive Partitioning Analysis (RPA) on a dataset of 1578 glioma

patients in the Radiation Therapy Oncology Group (RTOG) clinical trials to group patients into

prognostic classes, which are significantly distinct from each other in terms of survival times [11].

RPA1 is a nonparametric partitioning method that is used to study the full interaction between prog-

nostic factors and patient survival. The RPA method has been developed by Ciampi et al. for use

on censored survival data [9]. RPA searches for the best possible value for each prognostic variable

that splits the data in a way that is most statistically significant with respect to survival times. Ini-
1Otherwise known as RECursive Partition and AMalgamation (RECPAM) [9]
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tially, the entire data is considered. After determining a significant split, which separates the patients

into statistically different survival classes, the process is repeated recursively on the data associated

with each split. RPA repeats this process, producing subsequent splits, until no further significant

splits can be made. This produces a binary decision tree, whose primary decision node is a split of

a prognostic variable, which splits the entire data into two survival groups. The subsequent deci-

sion nodes are cut points of other prognostic variables, which, in turn, split the “‘current” sets into

smaller sets. This process terminates either when each resulting node’s associated subset of patients

contains a minimum pre-set number of patients, or when no more statistically significant splits can

be made. Finally, when the tree formation is complete, any two leaf nodes, whose associated subsets

of patients are statistically similar with respect to survival, are amalgamated or combined to form

one survival class (hence, the tree becomes a directed acyclic graph). This final step is useful: even

though the RPA method determines splits in a way that left and right terminal nodes represent signif-

icantly distinct subsets of the data, it is still possible that nodes from different parents are statistically

similar.

Figure 2.2 shows the RPA decision tree developed by Curran et al. . This tree specifies six

RTOG-RPA survival classes for glioma patients, where class I, with median survival time of 58.6

months, is the group of patients with the most favorable prognosis and class VI, with median survival

time of 4.6 months, is the group with the poorest prognosis. Also, age is found to be the most

significant pre-treatment prognostic factor in glioma patients, where patients older than 50 have

significantly shorter survival times. In glioblastoma patients, after age, KPS and extent of surgery

are found to be the most significant prognostic factors. The authors note that despite many advances

in treatment of glioblastomas, at the time of their study (which was conduced in 1993), pre-treatment

prognostic factors such as age and KPS affect survival more than treatment variations [11]. The full

list of prognostic factors used by Curran et al. is as follows:

• Patient-specific pre-treatment: age, sex, race, duration of symptoms, neurologic functional

class and KPS.

• Treatment-based: extent of surgery, total radiotherapy dose and fraction size, interfraction

interval and type of agents used for chemotherapy.

• Tumor-specific: location, size and histology of tumor. Tumor size is the only image-based

factor used in this study.

An important objective of the study by Curran et al. and many studies that follow below, aside

from determining the significance of various prognostic factors, is to determine significantly differ-

ent patient risk groups to help in the design and stratification of clinical trials. The RPA method

used by Curran et al. allows them to fully utilize the interaction between the different prognostic

factors to partition the patients into statistically distinct risk groups [11]. Being able to determine

11



Figure 2.2: Recursive partitioning decision tree by Curran et al. [11]. Age is the primary prognostic
factor, splitting the data at 50. In total, 12 terminal nodes are obtained. Terminal nodes with similar
survival profiles are amalgamated producing a total of six survival classes. Classes III, IV, V and
VI result from amalgamation. KPS = Karnofsky Performance Status, BT = biopsy, Neuro FCT
= neurological function, RT = Radiotherapy, Symp Time = Duration of symptom signs, GBM =
glioblastoma. Figure re-produced with the permission of Oxford University Press.

risk groups, which in turn helps in stratification of clinical trials, is the reason the RPA method has

become the preferred statistical analysis method over another prominent method, the Cox propor-

tional hazards model, which is used to determine prognostic factors in survival data by estimating

hazard ratios [58].

To determine whether two given splits are statistically significant with respect to survival, many

authors including Curran et al. , use the Kaplan-Meier Product-Limit method to estimate survival

functions for each survival class [12], and then use a statistical significance test such as the Wilcoxon

rank sum test or the logrank test to confirm that each survival class is significantly distinct from the

others [12]. Kaplan-Meier estimators [25] are widely used in the study of prognosis in populations

to estimate survival functions in survival data containing censored observations. For example, for

each survival class in Figure 2.2, the Kaplan-Meier estimator produces a function plot, which can be

seen in Figure 2.3. The function plots for all survival classes start at full patient participation at the

beginning of the study. As months pass, each class loses patients, due to either death or censored
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Figure 2.3: Kaplan-Meier plots for RTOG-RPA survival classes obtained by Curran et al. [11]. The
Kaplan-Meier estimator for each survival class is the probability that a patient in that class survives
at a given time. Figure re-produced with the permission of Oxford University Press.

observations. This loss of patients, due to both causes, is reflected in the plot of a survival class that

changes only at times when a death has occurred. In other words, every time a death occurs, the

total number of patient losses (due to death and censored observations) since the last time a death

occurred, are explicitly shown in the Kaplan-Meier survival plot.

The Kaplan-Meier estimate of a survival function is expressed as:

KM(t) =
∏

x≤t

(1− d(x)
n(x)

) (2.1)

where d(x) is the the number of deaths at time x and n(x) is the number of patients still in the study

prior to time x. Note that in the function, as stated earlier, only events at time x, where a death

occurs (i.e. d(x) > 0), contribute to the final product [2].

Due to the presence of censored observations, the logrank test is a preferred test of statistical

significance between the Kaplan-Meier estimates for survival classes. One purpose behind using

Kaplan-Meier estimates along with statistical significance tests is to help determine splits in recur-

sive partitioning methods such as the RPA. However, many authors also use Kaplan-Meier estima-

tors to demonstrate and confirm the predictive power of the obtained survival classes. To confirm

that survival classes obtained from a partitioning method have strong predictive power for use in

prognosis, authors typically try to demonstrate that the survival classes are significantly different at

high levels of significance when tested on new datasets. In fact, Scott et al. validate the predictive
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power of Curran et al. ’s survival classes on a different RTOG dataset of 615 patients [54]. Scott

et al. use the prognostic criteria in the decision tree obtained by Curran et al. to partition their

new set of patients into survival classes. Then they use Kaplan-Meier estimators to demonstrate

that the RTOG-RPA survival classes have strong predictive power by performing significance tests

with significance levels of 0.0001 (of survival class being different) between most of their survival

classes [54]. Many of the studies, mentioned in the previous section, use Kaplan-Meier estimators

and plots with statistical significance testing such as the logrank test in order to demonstrate their

model’s predictive power [41, 16, 5, 30].

Shaw et al. apply the RPA method to a new dataset of 1672 patients diagnosed with only glioblas-

tomas [55], as opposed to the RTOG-RPA classes, which were based on glioma patients [11]. This

study simplifies the RTOG-RPA classes from the previous papers and combines certain survival

classes from the RTOG-RPA classes to obtain only three survival classes: RPA class III with median

survival time of 17.1 months, class IV with median survival time of 11.2 months, and classes V

and VI combined with median survival time of 7.5 months. They also reduce the number of signifi-

cant prognostic factors to only age, KPS, extent of surgery and neurological function (a measure of

patient’s ability to work). Another study, Mirimanoff et al. , uses 573 glioblastoma patients from

EORTC2 and NCIC3 clinical trials to verify the predictive power of three of the RTOG-RPA classes

(III to V) [38]. They also demonstrate that the combination of radiotherapy and temozolomide agent

may have a more positive effect on patient survival than the use of radiotherapy alone. Note that

as mentioned in the previous section, glioblastoma patients with methylated MGMT highly benefit

from the use of both treatments [22].

Shakima et al. use a smaller dateset of 86 glioblastoma patients that fall in the RTOG-RPA

classes V and VI and determine small pre-surgical tumor sizes as the predictor for longer survival

times [56] in their dataset. Pichlmeier et al. use a dataset of 243 glioblastoma patients to investigate

the influence of the extent of tumor resection on survival times in addition to verifying the predic-

tive power of the RTOG-RPA survival classes [43] using Kaplan-Meier estimates with significance

testing. They discover that in patients who fall in RTOG-RPA classes IV and V, complete resec-

tion in which all contrast-enhancing tumor region is surgically removed, improves survival times

significantly more than incomplete resection.

In conclusion, despite many advances in cancer treatment and numerous clinical trials, pre-

treatment prognostic factors are still significant predictors of glioblastoma patient survival. Many

of the studies mentioned earlier use both pre-treatment factors and treatment variations. However,

pre-treatment factors such as age and KPS have been widely confirmed to be the most important

prognostic factors. A treatment factor, extent of surgery (resection), is also found to be significant

in affecting patient survival. However, despite the frequent use of MRI in diagnosis and prognosis,

image-based factors are rarely used in many of the studies mentioned in this section. For example,
2European Organization for Research and Treatment of Cancer
3National Cancer Institute of Canada
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the only image-based factor used by Curran et al. is tumor size (maximum diameter < 5.0 cm or

≥ 5.0 cm) [11]. In our work, we only take into account pre-treatment factors. These factors include

image-based textural properties in pre-surgical scans and patient-related information such as age

and gender. Our study is the first to use image-based textural properties from MRI in prognosis of

glioblastoma.

In biomedical research, the predictive power of a survival prediction method is determined by

measuring the level of statistical significance at which the system can discriminate between survival

classes. Kaplan-Meier estimators are used widely with statistical testing methods such as the logrank

test to measure the predictive power of survival prediction methods using censored survival data.

In our work, we adapt a different understanding of prediction and measures of prediction. We

define prediction accuracy as the total number of patients whose survival class has been correctly

determined by the prediction method. We will describe more of our approach to survival prediction

in the later chapters.

Finally, unlike population studies, gene-expression profiling can personalize prognosis. Every

patient has a unique genetic profile and therefore, personalized approaches are required for more

reliable prognoses. Population studies capture features in the patient population that most commonly

affect patient survival times. For example, age is detrimental in prognosis with patients older than

50 commonly having much shorter survival times. However, population studies do not explain

why some young patients have similar survival times as much older patients. But as we mentioned

earlier, researchers have discovered a gene-expression profile in certain patients, which is a stronger

predictor of survival than age. Therefore, certain younger patients, who lack this gene-expression

profile, do not benefit from its favorable prognostic effects. In our approach, we attempt to capture

personalized features based on textural properties of a patient’s brain scan images and then combine

these features with other more general factors such as age, therefore, taking advantage of both unique

personal factors and information learned from populations in the prognosis of glioblastoma patients.

2.3 Texture Analysis

Defining what constitutes texture has always been a topic of interest in the fields of image process-

ing, computer graphics and computer vision. The main challenge has been to describe the properties

of texture in an image numerically for meaningful quantitative analysis. Quantitative analysis in

textures is essential in many tasks such as classification of images based on their textures, segmen-

tation of an image into homogeneous regions, synthesizing texture for computer graphics and image

retrieval based on texture [26, 37]. However, it is very difficult to describe in precise terms what we

visually perceive as texture, even though being able to visually distinguish one texture from another

comes to us naturally. As a result, there is no unique definition for texture. We can characterize a

texture by its properties as we perceive them based on visual and tactile senses. For example, we

can describe a certain texture with such terms as ‘net-like’, ‘rough’ or ‘smooth’. Therefore, a good
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Figure 2.4: Images from [3]. The textural primitives in these textures can be easily described.

approach to quantitative analysis of textures is to first describe a texture in a way that is perceptually

and intuitively meaningful and then try to measure these properties in order to approximate visual

perception. To be able to measure textural properties, we need to understand the underlying struc-

ture of what constitutes texture. There have been traditionally two general approaches to defining

texture: structural and statistical.

In the structural view, loosely described, large number of very small well-defined objects or

patterns filling an area or a surface can be viewed as texture [15]. Images of surfaces covered with

grass, hair or sand are all examples of small objects defining a texture. Spots on a leopard’s skin

or stripes on a tiger are examples of small patterns defining a texture. This approach to perceiving

texture gives rise to structural texture analysis, which defines texture as a macroscopic region that is

characterized by repetitive patterns of primitives (elements or micro-texture) arranged according to

a (not necessarily strict) placement rule [59, 67, 6]. Hence, characterizing a texture using structural

texture analysis relies on characterizing the basic patterns or primitives comprising the texture and

their interactions. Primitives comprising a texture are characterized by their shapes and sizes [26]. It

is believed that these characteristics in the underlying structures are what leads us to perceive texture

in terms of ‘coarseness’, ‘uniformity’, ‘roughness’ and so on [37]. Figure 2.4 displays some textures

from the Brodatz album [3], which can be easily described by the textural primitives that comprise

them. Structural texture analysis seeks to determine the structural primitives in a textured image.

However, for most textures, this is a very difficult task. Therefore, structural texture methods are

mainly developed for texture synthesis, which is the task of synthetically constructing large regions

of texture from samples of small regions [15].

Not all textures can be described by an underlying structure such as repeating patterns or prim-

itives. Some textures have more complex stochastic structures that cannot be simply decomposed

into any basic elements. Statistical texture analysis methods have been introduced to be able to

study these textures. Statistical methods are based on the notion that texture can be characterized by

the distribution of gray-levels, their local variations and the relationships between them [59, 67, 6].

Figure 2.5 displays examples of textures from the Brodatz album [3], which cannot be described in
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Figure 2.5: Images from [3]. These textures have a more stochastic structure and cannot be easily
described by any repeating patterns or primitives.

terms of simple structures.

Structural and statistical texture analysis can be used to described textural properties. For ex-

ample, coarseness of a texture can be characterized by the size of its textural primitives; the larger

the primitives, the coarser the texture and inversely, the smaller the primitives, the finer the tex-

ture. Properties such as contrast and homogeneity, on the other hand, can be better characterized by

the local variations in gray-levels. Most textures can be described by both structural and statistical

properties.

Karu et al. tackle the question of whether a given image has texture in order for texture analysis

to be meaningful [26]. They explain that the most important characterizing factor of texture is

coarseness. An image must have a certain level of coarseness for it to have meaningful texture and

this is determined by the size of its textural primitives or equivalently, the scale of the image. At

one extreme, the textural primitives can be so small that they become dots, indicating the highest

level of fineness, in which case, the image can be described as white noise. On the other extreme,

the textural primitive can be so large that only one can fit in the image. In both cases, there is

no meaningful texture in the images. Once we ensure that there is a certain level of texture in an

image, the challenge is to characterize the texture in meaningful terms. Tamura et al. specify some

basic intuitive textural properties in pairs, which correlate with visual perception of textures and are

meaningful when applied to most types of texture [59]. These specifications are as follows with

references to examples of textures in Figure 2.6 (D20, D34, D38, D67, D68, D93 and D98):

• Coarse (D98) versus fine (D93). The larger the textural primitives and the more scattered they

are, the coarser the texture.

• High contrast (D20) versus low contrast (D38). Contrast relates to how stretched the range of

gray levels are. Sharp edges in the image also contribute to higher contrast.

• Directional (D68) versus non-directional (D67). Directionality is a global property over a

region, which is based on the shape and placement of the textural primitives.
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Figure 2.6: Images from [3]. Tamura et al. describe the textural properties of these images based
on visual perception [59]. Texture D98 is coarse, irregular and rough, D93 is fine, D20 has high
contrast, D38 has low contrast and is smooth, D68 is directional, D67 is non-directional and blob-
like, D34 is line-like and regular.

• Line-likeness (D34) versus blob-likeness (D67). This property is characterized by the shape

of the textural primitives.

• Regular (D34) versus irregular (D98). Regularity relates to the variations of the placement

rule for texture primitives.

• Rough (D98) versus smooth (D38). Roughness is based on what one may perceive a tactile

texture by touch rather than by visual senses.

When tested by human subjects who would rate texture images based on these intuitive speci-

fications, some correlations were observed [59]. Tamura et al. note that, for example, contrast and

coarseness are somewhat correlated. High contrast resulting from many sharp edges indicates fine

texture (picture a checkerboard with very small boxes). They also note that we visually perceive high

roughness in coarse textures that have high contrast. Also, line-like textures are visually perceived

as directional [59]. Out of all textural properties, regularity is the hardest to describe and implement
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quantitatively. It is hard in general to define regularity in such a way that can be applied to any given

texture.

Numerous texture analysis methods have been proposed in the past four decades for measuring

textural properties. One of the first and most widely used methods is the extraction of second-

order statistics based on pairs of gray-level distributions in the image [21]. Haralick et al. in-

troduced a method based on Gray-Tone Spatial Dependence Matrices (also known as Gray-Level

Co-occurrence Matrices), which assumes that the textural properties of a region can be determined

from the overall or average spatial relationship between the gray levels in an image [21]. More

specifically, a co-occurrence matrix collects information regarding the distribution of pairs of pix-

els within an image according to a displacement rule, which is defined by a distance and an angle.

For a given distance d and angle θ, the entry (i, j) in a normalized co-occurrence matrix Pdθ is the

joint probability that a pixel with gray value j appears at a distance d and angle θ with respect to

a pixel with gray value i. Haralick et al. propose 14 second-order textural properties, which can

be computed from a co-occurrence matrix. Such properties include energy (which measures ‘order-

liness’), contrast, correlation (which measures gray-level linear dependencies) and more. Many of

these properties correlate with each other, thus computing all of them would be redundant. Simple

first-order statistical texture properties can also be computed directly from the image. These meth-

ods measure basic statistical variations in gray-levels and are mostly based on the histogram of an

image, which counts the total number of pixels with a given gray value within the image. Hence,

a normalized histogram gives the probability that a given pixel in the image has a certain gray

value. Some simple first-order statistics include mean, variance and skewness of the distribution of

gray-levels. It is reported that first-order statistics are not effective in capturing textural properties,

whereas second-order statistics have a higher correlation with human visual perception [37].

Recent structural texture analysis methods have been proposed by Leung et al. [31] and Varma

and Zesserman [61], which tackle the difficult task of determining textural primitives (also called

textons) for the purpose of texture classification. Textons are more specifically defined as small

primitives of pre-attentive visual perception of texture and correspond to the dominant local image

structures [31]. Both proposed texture classification methods work by building a universal collection

of textons (texton dictionary) from many texture images, obtained under varying illuminations and

viewpoints, representing textures from different materials, such as leather, marble or rug. Then

models are built for each material image by determining the distribution of dictionary textons present

in the image. New texture images with novel illumination and viewpoint conditions can then be

classified by comparing their texton distributions with the models. Both proposed methods compute

the textons for an image by using a popular technique called linear filtering [15, 48, 8]. Through

linear filtering, every pixel p in the image is represented by a weighted linear combination of the gray

values in the region centered at p. The weights in the weighted linear combination are provided by a

filter kernel (commonly referred to as just a filter). The process of computing the linear combinations
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Figure 2.7: Image D20 from [3] convolved with a vertical edge filter.

for every pixel in the image using a filter kernel is referred to as a convolution and the resulting value

of each linear combination for a pixel is called a filter response. Intuitively, the idea behind linear

filtering is that given a filter kernel designed with a specific structure in mind, a convolution of an

image with the filter kernel results in strong responses in the regions of the image where the local

structure is similar to the structure of the filter kernel. For example, in Figure 2.7, a texture image

(D20) is convolved (*) with a vertically orientated edge filter and in the resulting image, one can

see that vertical edges within the texture image (D20) resembling the edge filter have shown strong

responses.

Some of the most commonly used filters are Gaussian filters, and weighted linear sums of mul-

tiple Gaussians, which in turn, result in spot and bar filters [15]. A 2-dimensional Gaussian filter is

given by:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.2)

Both Leung et al. [31] and Varma and Zesserman [61] use filter banks (collection of filters with

different structures) to build their texton dictionaries. Varma and Zesserman experiment with differ-

ent filter banks in their texture classification method and report that a filter bank called the Maximum

Response 8 (MR8) achieves the best results [61]. The MR8 filter bank is a combination of bar and

edge filters at different scales and orientations, whose resulting filter responses are “collapsed” by

recording only the maximum responses along different orientations of the same scale of the bar and

edge filters (there will be a detailed description of the MR8 filter bank in Section 4.1.4).

In addition to structural and statistical texture analysis methods, another very common class of

texture analysis methods are the transform methods. Two of the most important transform methods

are the Fourier transform and wavelets [8]. The Fourier transform of an image takes the image from

the spatial domain and represents it in the frequency domain. For a given two dimensional image
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Figure 2.8: Image D20 from [3] and its representation in frequency domain.

f(x, y) where 1 < x < M and 1 < y < N , the discrete Fourier Transform of the image is:

F (u, v) =
M∑

x=1

N∑

y=1

f(x, y)e−i( 2πux
M + 2πvy

N ) (2.3)

where, 1 < u < M and 1 < v < N . Given the Euler’s formula,

eiθ = cosθ + isinθ (2.4)

if we let θMN (x, y, u, v) = 2πux
M + 2πvy

N , then the transform can be re-written as:

F (u, v) =
M∑

x=1

N∑

y=1

f(x, y)(cos θMN (x, y, u, v) + i sin θMN (x, y, u, v)) (2.5)

As the above equation shows, the Fourier transform of an image represents the image in terms of

sinusoids (sines and cosines) with varying frequencies and orientations determined by u and v in the

frequency space. To better understand what is meant by frequency across a 2-dimensional image,

one may draw a straight line, in any direction (orientation), across an image and then treat the gray

values along the line as a 1-dimensional signal. Then, one can see that the frequency of the signal

results from variations in gray values across the signal. The frequency space of an image describes

the spatial frequencies across the entire image in all directions. In terms of texture, high frequencies

across an image can be caused by sharp variations in gray values. Figure 2.8 shows a texture image

and the log of the magnitude of its Fourier transform. Note that since the Fourier transform is

a complex-valued function, it cannot be fully visualized in the frequency domain. Therefore, it

is common to instead display the magnitude of the transform (also referred to as the magnitude

spectrum), i.e. |F (u, v)|.

Pixels in the magnitude spectrum diagram represent magnitudes of the spatial frequencies in the

texture image. Pixels closer to the center represent low frequencies and pixels far from the center
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represent higher frequencies. The angular relationship of the pixels to the center point represents

the orientation of the frequencies. The horizontal and vertical textural patterns in the texture image

D20 reflect in the magnitude spectrum as strong horizontally and vertically oriented frequencies

(Figure 2.8). Filtering an image is also possible in the frequency domain. This is done by multiplying

the Fourier transform of the image by a filter mask. A filter mask can remove certain frequencies

from the image by multiplying them by zero in the frequency domain and retaining other frequencies.

Low-pass filters allow lower frequencies to stay and remove higher frequencies. On the other hand,

high-pass filters allow higher frequencies to stay and remove lower frequencies. A filtered Fourier

transform of an image can be converted back into the spatial domain by using the inverse Fourier

transform:

f(x, y) =
1

MN

M∑

u=1

N∑

v=1

F (u, v)ei( 2πux
M + 2πvy

N ) (2.6)

Then textural properties such as first-order statistics can be extracted from this filtered image

for texture analysis. One major problem with the Fourier transform is the fact that the spatial in-

formation is lost in the frequency domain. It is impossible to know where, in the spatial domain,

certain frequencies occur. All that the Fourier transform tells us is what frequencies occur across

the image, at what magnitudes and orientations. Computing textural properties in the frequency

domain makes it impossible to localize the computed textural properties to certain regions or pixels

in the original image. On the other hand, by computing textural properties in the spatial domain, on

the original image, we will lose any information about frequencies across the image. As a result,

wavelet transforms have been used to resolve the frequency localization problem [8, 48, 6].

Wavelets (small wave filters) characterize a texture image by the frequency content of the im-

age at different directions and different scales of the image. The wavelet transform of an image

associates to each pixel, wavelet coefficients, which correspond to different frequency patterns at

different scales of the image, describing the frequency pattern of the image at that pixel. Wavelets

work in a way similar to linear filter kernels in that at each scale, strong responses (coefficients)

are associated with regions in the spatial domain of the image where the local frequency pattern is

similar to the wavelet. Wavelets at smaller scales of the image detect high frequency patterns and

are more localized. Wavelets at larger scales of the image detect low frequency patterns, which span

larger regions. The scale property in wavelet analysis can be related to texture, since low frequencies

(at high scales) in the image are associated with the image’s overall coarseness, whereas localized

high frequencies (at low scales) are associated with the region’s fineness. Using wavelet transforms,

one can then characterize the frequency patterns of the image at different scales and locations in the

image [6].

There are many other texture analysis methods, which utilize different filtering schemes to char-

acterize complex textural properties. Chen et al. compare several filtering methods for the purpose

of texture classification [8]. In their experiments, they perform filtering using ring/wedge-like filters

22



in the frequency space and then compute variances in spatial domains and frequency domains. Ring-

like filters in the frequency domain measure coarseness of the image’s texture, and wedge-like filters

measure directionality. They also use wavelet transforms to produce wavelet coefficients at multiple

scales. They compute the variances of the wavelet coefficients in the wavelet transformed images

across different scales and directions to capture coarseness and directionality. Their experimental

results indicate that the wavelet features produce relatively better accuracies in texture classification.

Randen et al. also compare a variety of filtering methods for texture segmentation in multi-textured

images [48]. They compare the filtering methods to the classical methods such as second-order

statistics from co-occurrence matrices [21]. Their main conclusion is that no one texture extrac-

tion method performs well on all types of texture images and that second-order statistics performed

mostly poorly.

2.3.1 Texture Analysis of Magnetic Resonance Images

The use of texture analysis on medical images has become prevalent in the past couple of decades.

Medical images, and more specifically Magnetic Resonance Images, pose a special challenge in that

the local textural properties cannot be easily described by structural texture methods. Upon close

inspection on MR images from brain scans, one can see that the textures in tissues are very different

than most of the natural texture images discussed in the previous section. One can see that there

simply are no textural primitives or repeating patterns within tissues on MR images the same way

one can characterize the patterns of the textures in Figure 2.6. Texture in brain tissues has a more

complex structure. Moreover, brain tissue (especially diseased tissue) on MRI have more irregular

and heterogeneous appearances. As a result, statistical texture methods are more appropriate. In fact,

second-order statistics obtained from co-occurrence matrices [21] are one of the most prominent

texture analysis methods applied on MRI [51, 27, 23, 35, 6, 52]. However, other more sophisticated

texture methods such as transform-based methods [51, 52, 4] and filtering [53, 18, 52] have recently

been receiving some attention as well.

Lachmann and Barillot introduced one of the earliest automatic systems for recognition of brain

tissue on MRI [29]. They use a method called the spatial gray-level dependence method, which

builds co-occurrence matrices similar to ones proposed by Haralick et al. [21], except that they

build the matrices for local neighborhoods and compute second-order statistics such as contrast and

homogeneity to characterize the textures in those neighborhoods. Kito et al. built an automatic

system for segmenting healthy and diseased brain tissue including different classes of tumor, cere-

brospinal fluid, white matter and gray matter [51]. They utilize wavelet transforms for localization

in the space and frequency domains leading to multi-resolution (i.e. multi-scale, as discussed ear-

lier) analysis. They also compare texture features based on first-order and second-order statistics

(GLCMs), extracting all of these statistics locally in small neighborhoods. The authors report that

the wavelet-based features consistently performed slightly better than the other texture features. Ko-
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valev et al. introduce a more complicated extended version of co-occurrence matrices [27]. They

reason that textural differences in brain tissue are faint and not as well-defined as natural textures

such as the ones from the Bodatz album [3]. Therefore, much more sensitive texture extraction

methods are required to fully capture the subtle characteristics of brain tissue texture. They extend

the co-occurrence matrices to higher dimensions by taking into account more than just gray-level

co-occurrences between pairs of pixels. In addition to gray-levels, they also include the following re-

lations: local gradient magnitude and relative orientation of gradient vectors between pairs of pixels.

This helps their texture methods achieve high sensitivity and specificity. Unlike the Haralick et al.

co-occurrence matrices, instead of computing statistics from the matrices, Kovalev et al. simply use

the L1-distances between the matrices to compare co-occurrence matrices in order to compare tex-

tures. Using their high-dimensional co-occurrence matrices, they succeed in discriminating images

from healthy subjects (controls) from images of patients.

Herlidou et al. use simple histogram-based first-order statistics along with second-order statis-

tics (GLCM) such as contrast, correlation, homogeneity and entropy [23]. They also include a

higher order statistical method called run-length matrices. Run-length matrices count for each gray-

level, the total number of consecutive runs of pixels having the same gray value for a given length

and direction in the image. Using these texture features in a hierarchical clustering method, they

build a framework, which seeks to discriminate tissue type on MRI of patients with intracranial

tumors. Their framework can achieve relative success in discriminating certain tissue types, e.g.

white matter regions from other healthy regions on T2-weighted MRI and furthermore in discrim-

inating regions in the tumor from the surrounding edema [23]. Mahmoud et al. introduce another

extension to GLCMs [35], which differs from the version proposed by Kovalev et al. [27] in that

the displacement rule is extended to three-dimensions (spans across slices) for texture analysis on

three-dimensional MRI volumes. The co-occurrence matrices themselves are still two-dimensional,

which means they still characterize pair-wise spatial co-occurrences between pixels, much like the

original version proposed by Haralick et al. [21] but now they include pairs of pixels across slices

as well. Similarly, they compute second-order statistics such as energy and correlation from the

matrices in the conventional way. The authors compare their new extended co-occurrence matrices

with the original GLCMs in discriminating brain tissue based on texture. They report good discrim-

ination between white matter surrounding the tumor and white matter far away from the tumor using

their extended GLCMs [35].

Sasikala et al. combine the traditional GLCMs and wavelet transforms to segment glioblastomas

on MRI. [52]. They build GLCMs for local neighborhoods and then compute second-order statistics

such as energy, homogeneity and entropy. Then they use a genetic algorithm to perform feature

reduction to reduce the number of texture features, to produce the set of “optimal” features. Using

their texture extraction method, Sasikala et al. report good segmentation results. They also report

successful discrimination between healthy and diseased multiple sclerosis tissue. Ghazel et al. in-
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troduce a supervised segmentation framework, where regions of interest containing both multiple

sclerosis and healthy tissue are used to create optimal texture filters, which can then discriminate

healthy tissue from multiple sclerosis tissue [18]. They build optimal filters maximizing feature sep-

aration between two textured regions, which in turn can be discriminated simply by thresholding.

This framework, which includes optimal filters, was used in the comparative study of filter methods

by Randen et al. [48], which reported it performed well.

Finally, in a recent work, Brown et al. used texture analysis to detect a certain genetic feature

with favorable prognosis in oligodendroglioma (a low grade glioma) from MR images [4]. It has

been a well-known fact that co-deletion of chromosomes 1p and 19q is associated with a favorable

prognosis for oligodendroglioma patients. Brown et al. use S-transforms to analyze local spatial-

frequency patterns in texture of the tumors. On MR images, strong low frequency patterns appear

as homogeneous whereas strong high frequency patterns appear as heterogeneous. S-transforms,

much like wavelet transforms, are a localized transform-based method that describe local frequency

patterns for each pixel in the image. The most significant differences between tumors with and

without the genetic features were observed on T2-weighted MRI (compared with T1-weighted and

FLAIR images) and moreover, they discovered that only medium range (as opposed to high or

low) spatial frequencies in the texture of tumor tissue are highly predictive of the favorable genetic

feature. Unfortunately, this genetic feature is not necessarily associated with favorable prognosis in

glioblastoma patients.

Our work is different from most of the works mentioned here in that we aim to use texture

analysis of MRI data to predict prognosis for glioblastoma patients, whereas, all the works (except

for the work of Brown et al. [4]) aim to segment tumors or discriminate tissue types. Our goal

is to discover whether texture of certain regions of the brain on MRI can discriminate low-survival

patients from high-survival ones. For our work, we choose Gray-Level Co-occurrence Matrices be-

cause, they are the most widely known and used texture methods on MRI and the features extracted

from co-occurrence matrices are the most intuitive. We also choose the MR8 filter bank because

they encompass multi-scale, multi-orientation texture extraction, which can measure local textural

properties at different scales producing short-length features. Schmidt also used the MR8 filter bank

in a tumor segmentation framework in addition to many other features and reported that this filter

bank, despite being simple, performed remarkably well [53].
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Chapter 3

Survival Prediction Overview

3.1 Motivation

As discussed in Chapter 2, there are a variety of factors used by clinicians and researchers to make

prognostic assessment of glioblastoma patients. Clinicians primarily consider clinical data such as

age and KPS, which have been shown to strongly predict survival (Section 2.2). Genetic markers

are also potentially useful prognostic factors, but they are mostly studied in laboratory analysis by

researchers (Section 2.1.1). There are very few genetic markers that have been widely and indepen-

dently confirmed to be of prognostic value and therefore, genetic markers are not routinely used by

clinicians for prognosis. However, clinical imaging is a routine procedure in clinical practices for

diagnosis and treatment planning. While there are a few widely confirmed markers such as MGMT

methylation, there has not been any studies to find possible relations between such genetic mutations

and the appearance of glioblastoma tumors on MRI scans. If such relations held, then we could de-

sign features based on MRI to detect these genetic mutations and use them in prognosis. This would

save clinicians and surgeons time and avoid unnecessary and risky surgical procedures and costly

and time consuming laboratory work for tissue analysis.

However, there are certain appearance characteristics of glioblastomas that are known to be

of prognostic value. One important example is when the glioblastoma invades the other cerebral

hemisphere through the corpus callosum (Figure 3.1), producing a symmetric shape resembling a

butterfly [49]. Such glioblastoma appearance is usually associated with higher tumor aggressiveness

and poor prognosis.

Another important appearance characteristic is the presence of mass effect caused by the glioblas-

toma and the edema surrounding it. The presence of mass effect is indicative of increased growth.

As the tumorous mass grows, it exerts pressure on the brain tissue surrounding the growing mass

against the skull. This intracranial pressure is a danger to the blood supply of the surrounding brain

tissue. The presence of mass effect can be observed by the deformation and blurriness of the nearby

sulci. Sulci (single: sulcus), as seen in Figure 3.2, are thin furrows or wrinkles close to the outter

edge of the brain. The texture of the sulci under pressure from mass effect can be described as blurry
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Figure 3.1: Tumor infiltrating through the corpus callosum

Figure 3.2: Sulci in a brain image. The sulci near the tumor is under pressure due to mass effect.

or smudged, properties that can be measured using texture extraction tools on MRI.

Also, as mentioned earlier (Section 2.1), a few studies have investigated the relations between

certain appearance characteristics of glioblastomas and patient survival. The measurements of ap-

pearance characteristics were manually and visually measured by experts rather than by automatic

extraction through image analysis techniques. Hammoud et al. and Pierallini et al. each claim that

the extent of the necrotic region, which is the central region within the tumor containing dead cells,

is related to patient survival [20, 44]. Pope et al. explained that the presence of a non-enhancing

tumor is indicative of a favorable prognosis in older patients and an increased amount of edema is

indicative of poor prognosis [46].

Based on these observations, we lay out a machine learning framework for prognosis in glioblas-

toma patients. The general idea is to be able to predict the survival category of a given patient based

on information from other patients and their survival categories. We achieve this using mostly fea-

tures extracted from axial brain MR images to measure textural properties, combined with other

parameter and image based features.
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3.2 Framework Overview

In this section we give a brief overview of our prognosis framework and its different parts. We

leave detailed description of the parts for the next chapter (Chapter 4). In the following sections, we

first describe the central idea in our approach, Supervised Learning. Then we describe our feature

extraction scheme to be used in supervised learning. Finally, we will describe the raw data that we

use in our prognosis framework for testing and validation purposes.

3.2.1 Supervised Learning

The central idea of our prognosis framework is to first build a model given a set of patients and their

clinical data along with their survival times, then use this model to predict survival times of future,

previously unseen patients. This method of prediction is called Supervised Learning. Intuitively,

supervised learning is to get a machine to “learn” a task, such as prediction or recognition, from a

set of provided examples and then have the machine perform the task autonomously in the future.

The set of provided examples is called the training set. The training set is composed of instances,

where each instance is paired with a label. Each instance is described by a set of features called

a feature vector, where each feature is a value encoding a certain property about the instance it is

representing. Each instance in the training set has a label, which is the value or property that we

expect the model to be able to predict. A model, which has been trained on the training data, is a

mapping from the feature vectors (or equivalently, instances) to the labels, which can then be used

to predict the labels of previously unlabeled data (instances). The set of data of unknown labels

is called the test set. When the labels are categories (or classes), e.g. healthy or diseased, then

the supervised learning method is referred to as classification and the learned model is called a

classifier. If the number of classes (i.e. number of unique labels) is two, then we call the model a

binary classifier. There are two phases to every classification problem. The first phase is the training

phase, where the feature vectors and their labels are used to build a classifier. The second phase is

the prediction (or testing) phase, where the classifier is used to predict the labels of unseen data.

Figure 3.3 demonstrates the process of training a classifier on data using paired feature vectors and

labels, and then using the classifier to predict labels.

As a simple example of a binary classifier, consider the simple task of distinguishing between

images of hand-written digits 1 and 2 using a machine. The training data is composed of images

of handwritten numbers and their labels are the corresponding values: 1 and 2. The feature vector

for each image can be built by measuring properties based on the image of the handwritten number.

The task of building relevant features from instances is called feature extraction. For example, one

can measure the curvature of the lines or the distortions, amongst many other possibilities. The

main goal is to learn a model (binary classifier) based on the labeled data (paired feature vectors and

labels), and then be able to use this model to distinguish between unlabeled handwritten images of

1 or 2 as demonstrated in Figure 3.4.
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Figure 3.3: The classifier is trained on (learned from) the feature vectors and labels in the training
phase. Then the classifier is used to predict labels from feature vectors in the prediction phase.

In this thesis, we build a binary classifier that maps features extracted from raw data of glioblas-

toma patients to survivals. The raw data (Section 3.3) contains volumes of axial, pre-surgical MRI

scans of the FLuid Attenuated Inversion Recovery (FLAIR) modality. Each patient has one volume

of scans, which is composed of a number of slice images. Image features are extracted for each

patient from the images and then combined with other simple raw data, including clinical data such

as age and sex. The label for each patient is the patient’s survival category. We define two survival

categories, low survival versus high survival. The survival categories are determined based on the

distribution of the survival times in our data set. The survival time for each patient is measured in

weeks, from the date the MRI scan was taken to the date of death (or date of data collection if date

of death is not available).

The feature extraction process of the framework mostly involves extracting textural features

from the MR images. As stated before, the primary goal is to measure and use certain textural

properties of the glioblastomas as they appear on MR images. We use a number of texture extraction

methods (Section 4.1) on a number of pre-defined regions (Section 4.2.1) in the brain images and

then combine the results with non-texture features to form a final feature vector for each patient. In

the next section, we give an overview of the different texture extraction methods that we use in our

framework.

3.2.2 Texture Extraction

For a given axial (Figure 3.5) MR image containing a cross section of the tumor, we first define a

set of regions. For example, we define the region inner as the area within the segmented tumor.

We believe that the textural properties of these regions are of prognostic value. The regions are
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Figure 3.4: Learning digit recognition from a set of images as training data, then classifying a new
image of a digit.

Figure 3.5: An axial image of a brain is parallel to a horizontal plane.

described in more detail in Section 4.2.1. For each region, we extract textural properties using a set

of texture extraction methods. Each texture method generates either a resulting texture image or a

set of matrices, which represent certain textural properties of the region on which the texture method

was used. However, to be able to utilize the results of each texture method effectively and efficiently,

we use simple statistical operations on the resulting texture image or the matrices to obtain fewer

values for use in our classification framework. Therefore, as shown in Figure 3.6, if each texture

method is seen as a black box, then the input to the black box would be a region of the MR image

and the output would be a single vector with two or three values depending on the type of the texture

method.

For a given region, we combine all the values obtained from the texture methods used on the

region to form a feature vector for that region as shown in Figure 3.7. This texture extraction

process is repeated for every region resulting in multiple region texture feature vectors. Eventually,
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Figure 3.6: Texture extraction produces either a texture image or a set of matrices. In either case,
statistical operations are used to reduce the resulting values.

Figure 3.7: For each region, a set of texture methods are used to obtain a set of values, which we
combine to form a feature vector for that region.

all the region texture feature vectors are consolidated to form one texture feature vector, called the

combined-regions texture feature vector, as shown in Figure 3.8.

After region texture extraction is performed, we also compare the texture values between certain

regions in the MR image. This is done to use textural differences between certain regions as prog-

nostic factors in our prognostic framework. For example, significant texture difference between the

sucli region on the hemisphere of the brain, where the tumor is located (ipsi) versus the opposite

sulci region (contra) is indicative of presence of mass effect on the ipsi side of the brain. We do not

compare all regions pair-wise, but rather use only a select few regional comparisons; see full list in

Section 4.2.3. We call these types of features within-image region comparison features. As shown

in Figure 3.9, in within-image region comparison, we obtain the resulting difference vector from the

texture feature vectors of both regions. Then the values of this difference vector are consolidated

with the combined-regions texture feature vector from Figure 3.8 to represent the complete texture

feature vector for the MR image. The overview diagram for the complete MR image texture feature
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Figure 3.8: Texture extraction is performed on each region and the results are combined into one
feature vector representing texture properties for the MR image.

Figure 3.9: Region texture feature vectors from two regions are used to make one difference feature
vector.

extraction is shown in Figure 3.10.

3.2.3 Complete Feature Extraction

Texture extraction is the major part of our feature extraction scheme in our prognosis framework.

What has been described so far is the process of obtaining a complete texture feature vector for one

MRI slice. There are tens of slices in an MRI volume of a patient. Extracting texture properties

on all the images would be time-consuming and unnecessary. Besides, only less than half of the

images include cross sections of the tumor. Therefore, we select a few of these slices and extract

complete texture features only on these. Then we utilize the complete texture features from the slices

to obtain one final texture feature vector representing the whole MRI volume, thus representing the

patient, to use in our classification framework. There are, however, other non-texture features, which
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Figure 3.10: Complete texture feature extraction framework on a given image. First regional texture
feature vectors are built. Then selected regions are compared by obtaining the difference vector
from their region texture feature vectors. Then the results from the regional texture feature vectors
and the region comparison vectors are consolidated to obtain the complete texture feature vector for
the MR image.

are eventually combined with the final texture feature vector to obtain the final feature vector for a

patient. Construction of these features is simpler than the texture features and is described in detail

in Section 4.2.5.

3.3 Raw Data

The following data has been provided by the Cross Cancer Institute [24].

3.3.1 Glioblastoma Patients

We work with Magnetic Resonance scans of the brains of patients who are later, through histological

reports from biopsy, diagnosed to have glioblastoma tumors. Each patient may have several scans,

each with a known date. Some of the scans are pre-surgery and some are post-surgery. We chose

to use only images that come from raw pre-surgery scans, as this avoids surgical artifacts that are

introduced in the post-surgery scan images. Most patients have one pre-surgery scan but for those

patients with multiple pre-surgery scan, we use only one for our experiments.

In total we have images for 55 patients. The images for the patients were collected in two

batches. The first batch consists of patients, who were diagnosed between September 2006 and June
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2007; these were collected in July 2008. The second batch consists of patients, who were diagnosed

between July 2007 and December 2007; these were collected in December 2008. Most of these

patients had passed away at the date of collection and so their dates of deaths are known. However,

some patients were alive at the date of collection so their dates of deaths are unknown. For the

patients with known dates of deaths, we define survival to be the time period between the scan date

and the date of death, measured in weeks. For the patients with unknown dates of deaths, we take the

time period between the scan date and the collection date to be an underestimate for their survival

time, also measured in weeks. These patients are said to be right censored [12].

The data collected for our patients unfortunately include only images, age and sex. Therefore

we cannot include other useful clinical data such as KPS, surgical and treatment parameters.

3.3.2 Brain Images

Every brain scan includes between 19 to 22 axial slices of the brain separated evenly according to

the machine settings determined by the technician who took the scans. Each patient has MR scans of

a number of modalities, typically a subset of T1-weighted, post-contrast T1-weighted, T2-weighted

and FLAIR. Tissues with high fat content appear bright on T1-weighted images. Tissues with high

water content appear bright on T2-weighted images. FLAIR images are similar to T2-weighted

images but free water regions such as cerebrospinal fluid in the ventricals is supressed. Edema,

which is the swelling caused by accumulation of fluid, shows up bright on FLAIR and T2-weighted

images. However, not all our patients have all the modalities. As a result, we decided to use only

FLAIR images, which is the modality that is most prevalent amongst all the patients. Figure 3.11

shows all 20 slices of a pre-surgery FLAIR volume for one patient. The FLAIR images come with

different dimensions and ranges of gray values depending on their scanning and machine settings.

Therefore, in order to standardize the images dimensions and gray level ranges, we re-scale the

images to be 258-by-258 pixels, where each pixel has a gray level in the range 0 to 255.

To make meaningful assessment about the tumors, we needed tumor-segmented MRI scans.

Unfortunately, our images were collected without accurate expert segmentation. We therefore seg-

mented each image ourselves. Therefore, for each FLAIR volume, we manually segmented the

abnormal regions of the brain in each axial slice. We define an abnormal region to be an area of

visible tumorous tissue, which sometimes includes a necrotic center, in addition to the edema sur-

rounding it. Our manual segmentation may not be accurate, as we believe that perfect segmentation

is not crucial to our prognosis method. Nevertheless, we tried to be as consistent as possible. There

are a number of automatic segmentation tools available. We believe our manual segmentation is

sufficiently consistent, moreover this task gave us an opportunity to familiarize ourselves to the

different shapes and appearances of glioblastoma tumors.
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Figure 3.11: Slices of a FLAIR volume.

35



Chapter 4

Survival Prediction Framework

Section 4.1 describes the texture extraction methods used in the texture feature extraction process.

Section 4.2 describes our feature consolidation scheme, which involves combining regions from ax-

ial brain image slices to extract texture features, and then computing statistics based on the extracted

texture, to be used in the subsequent classification framework (Section 4.3).

4.1 Texture Extraction Methods

An MR image is a grayscale image, which can be represented by a matrix of pixels. Different textural

properties can be extracted from a region of interest in the image by performing computations that

use gray values of the pixels and/or the distribution of gray values within neighborhood(s) of the

pixels within the region. The result of the computations can be an image or a matrix, representing

either local or global properties of the original image or region of interest.

A local texture extraction method is one where for every pixel in the image, the gray values of the

pixel’s neighboring pixels are utilized to compute the local textural properties around that pixel. The

result of a local texture extraction on an image is an image with the same dimensions as the original

image. There is a pixel-to-pixel correspondence between the original image and the resulting image.

The intensity value of a given pixel in the resulting image represents the local textural properties

of the corresponding pixel in the original image. Such resulting image is called a texture image.

Figure 4.1 shows an example of a raw image and its corresponding texture image obtained by using

a Gaussian filter (described in more detail in Section 4.1.4).

If a texture extraction is not specified to be local, then all the pixels in the region of interest can

be used collectively to compute textural properties that pertain to the whole region. In this case, the

result of the texture extraction can be a single value or a matrix. If the result is a matrix, unlike in

local texture extraction, this resulting matrix should not be assumed to have the same dimensions as

the original image. The resulting value or matrix of a non-local texture extraction is a representation

of textural properties of the whole region. In other words, there is no pixel-to-pixel correspondence

between the original image and the resulting matrix.
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(a) Raw Image (b) Texture Image

Figure 4.1: A raw MR image and its corresponding texture image produced by a Gaussian filter.

4.1.1 Basic Statistics

Basic statistics are used on regions of interest (which will be defined in Section 4.2.1) on raw or

texture images to characterize their textural properties. For any region of interest, the mean and

the standard deviation of the gray values in the region can be used to measure the spread of gray

values of the pixels within that region. For example, a relatively dark region with a texture that can

be characterized as homogeneous has a relatively low mean and a low standard deviation, assuming

that the lowest gray value is black and the highest is white on the gray color spectrum. The mean

and standard deviation represent the gray level distribution in the region of interest.

Another useful statistic is entropy [32], which can be used on regions of interest from both raw

and texture images. Given a region of interest in a grayscale image, entropy is a function of pixel

intensities (or probabilities), which measures uncertainty in the region of interest. If the histogram

of the region, which describes the frequency distribution of the gray values (e.g. Figure 4.2), is taken

to be a probabilistic distribution, then the entropy computed using the histogram is a measure of the

region’s randomness. Let h = h1, . . . , hn be a normalized histogram of an image, where hi for

i = 1, . . . , n is the frequency of gray values that fall into bin i. Then the entropy for the image is

given by:

Entropy = −
n∑

i=1

hi log hi (4.1)

In our experiments, we chose a granularity of n = 100 for the histograms in the entropy com-

putations. We chose this level of granularity arbitrarily, subject only to the condition that it be

sufficiently large.

An image with a uniform distribution of gray values has a high rate of randomness. In other

words, the probability that a given pixel has a certain gray value is equal to the probability that the

pixel has any other gray value. In this case the uncertainty is maximum. As an example, consider an

image whose pixels only have binary values: 1 or 0. Also assume that half the pixels in the image
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(a) Uniform noise: entropy 6.6

(b) Gaussian noise: entropy 5.6

(c) All pixels equal 1: entropy 0

Figure 4.2: Images generated with different types of noise and their histograms. The one with
uniform noise has the highest entropy.

are 1 and the rest are 0 (in which case the distribution is uniform). In this case, given a random

pixel in the image, one cannot say with a high level of certainty that this pixel has a value of 1 (or

0), since the probability of any value occurring is 0.5. Therefore, the entropy, or equivalently the

randomness, is highest. On the other hand, if an image only has values of 1, then one can say with

100% certainty that any given pixel in the image will have the value 1. Therefore, the uncertainty

for such an image is minimized and the entropy is 0. Figure 4.2 shows three images with their

corresponding entropy measures; one generated by uniform noise, one generated by Gaussian noise

and one where all pixels have the value one.

4.1.2 Gray Level Co-occurrence Matrices: Second Order Statistics

The basic statistical tools, introduced earlier, extract first order statistics. First order statistics are

measures that do not take into account the location of gray values relative to each other. Therefore, if
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(a) (b) (c)

Figure 4.3: In the above neighborhood structures, the S indicates the pixel being referenced and the
O indicates the offset.

the pixels in a region of interest were to be scrambled, the statistical results would remain the same.

Gray Level Co-occurrence Matrices (GLCM), first introduced in [21], use second order statistics.

The central idea behind GLCMs is that gray values of pairs of pixels and their relative positions

characterize certain textural properties.

The first step in building co-occurrence matrices is to specify a neighborhood structure, which

in turn is used to construct the co-occurrence matrices from the region of interest in the grayscale

image. Then second order statistics are computed on the co-occurrence matrices to characterize

certain textural properties in the region of interest.

Neighborhood Structure

A gray level co-occurrence matrix is an n-by-n matrix, where n is the total number of gray lev-

els in an image. It is similar to an adjacency matrix, except that gray levels need not necessarily

occur adjacent to each other in the image; they can occur at any adjacent or distant arrangements,

which are defined by the neighborhood structure. In other words, the purpose of a gray level

co-occurrence matrix is to count, in a grayscale image, the number of times a certain gray level oc-

curs together with another gray level in a neighborhood defined by the neighborhood structure. The

neighborhood structure specifies which neighboring pixels or offsets are to be used in constructing

the co-occurrence matrices. For example, an offset of one above as a neighborhood structure, shown

in Figure 4.3(a), means that for every gray value pixel being referenced, the gray level of the pixel

immediately above it is used in constructing the co-occurrence matrix. Therefore, assuming that

there are n gray levels, 1, . . . , n, in a certain grayscale image, then an offset of one above as the

neighborhood structure will count for each gray level gi (i = 1, . . . , n), the number of times each

gray level gj (j = 1, . . . , n) appears immediately above gi, or equivalently, the number of times the

following pattern or ordering appears in the region of interest: gj

gi

A neighborhood structure can contain as many different offsets as considered suitable. For ex-

ample, the neighborhood structure in Figure 4.3(b) has three offsets: one above, one to the right and

one diagonal. In our experiments, we use the neighborhood structure shown in Figure 4.3(c), which

considers adjacent pixels above and to the left of the referenced pixel.
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Figure 4.4: Construction of GLCMs. On the left, the grayscale image has 5 gray levels with values
0 to 4. Therefore, each co-occurrence matrix is 5-by-5. The neighborhood structure has 2 offsets
and there is one co-occurrence matrix for each offset. In each matrix, the rows represent the gray
levels of reference pixels and the columns represent the gray levels of offset pixels. For example,
in the matrix for the offset left, as demonstrated in the Figure, gray level 0 appears three times with
gray level 4 to its left.

GLCM Construction

For a given region of interest in the grayscale image, if there are n gray levels in total, then the

dimensions of each co-occurrence matrix is n-by-n. The number of co-occurrence matrices is equal

to the number of offsets in the neighborhood structure. Each row of a co-occurrence matrix repre-

sents the gray level of a pixel being referenced and the columns represent the gray levels of pixels

that are offset to the reference pixel. Therefore, the number kij located at row i and column j of

the co-occurrence matrix representing offset O, indicates the number of times gray level gi appears

with gray level gj offset by O. Figure 4.4 shows the co-occurrence matrices built for a sample gray

scale image using a neighborhood structure that has two offsets, each located at a distance of one

from the reference pixel.

Once the gray level co-occurrence matrices are constructed, then each matrix M is normalized

to transform the values Mij from number of co-occurrences to probabilities (Pij) of co-occurrences:

Pij =
Mij∑n

i=1

∑n
j=1 Mij

(4.2)

40



Second Order Statistics

Given normalized co-occurrence matrices, certain statistical properties can be measured that de-

scribe certain textural properties of the image. For example, the co-occurrence values appearing

along the diagonal of a co-occurrence matrix represent the frequency at which pixels with the same

gray levels occur together in the image. If for a certain image, the values along the diagonals of its

co-occurrence matrices are large, then this image must have little contrast as this means adjacent

pixels have similar values. On the other hand, if the values farther away from the diagonal of the

co-occurrence matrices are more significant, then the image must have high contrast. The following

are some statistical tools used to extract textural properties from a normalized co-occurrence matrix

P = (Pij):

Energy:

√√√√
n∑

i=1

n∑

j=1

P 2
i,j (4.3)

Entropy: −
n∑

i=1

n∑

j=1

Pi,j log Pij (4.4)

Contrast:
n∑

i=1

n∑

j=1

Pi,j(i− j)2 (4.5)

Homogeneity:
n∑

i=1

n∑

j=1

Pi,j

1 + (i− j)2
(4.6)

Energy is a measure of how uniform the texture is. Entropy is negatively correlated to energy

and is a measure of randomness. When entropy is calculated based on co-occurrence matrices, it

is a measure of randomness in co-occurrences, as opposed to entropy that is calculated based on

the values in a raw image. Contrast is also negatively correlated with homogeneity. Due to these

correlations, in our experiments we choose to use only energy and contrast. As mentioned earlier,

we use the neighborhood structure shown in Figure 4.3(c) in our experiments. As a result, for

each region of interest, we construct two co-occurrence matrices. We then apply each second order

statistic to both matrices and then use the average of the two results. Therefore, two values, one for

energy and one for contrast, are returned for the GLCM texture results.

Finally, note that for an image with 256 gray levels (as is the case for all our images) the co-

occurrence matrices will be 256-by-256, which means the computations will be quite expansive.

Also, for such large matrices and for so many gray levels, it is expected that the matrices will be

quite sparse. As a result, using the mentioned statistical measures to extract textural characteristics

from these sparse matrices would be less effective. Therefore, in order to avoid these issues in our

experiments, we quantized the input grayscale images to 32 gray level grayscale images. Quantizing

to 16 or 8 gray levels would increase computation efficiency, however, too much information would

be lost in the process of quantization.
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Figure 4.5: Calculation of local standard deviation values to obtain the corresponding texture image.
Local entropy is computed in a similar way.

4.1.3 Local Statistics

We use the basic statistics of standard deviation and entropy to measure local standard deviation and

local entropy in a given region of the image. To obtain local standard deviation measures for a region

of interest, we compute for every pixel, the standard deviation of the neighborhood of that pixel and

record the result in a texture image as shown in Figure 4.5. Local entropy is computed the same

way, except that entropy is instead measured and recorded in the texture image. In our experiments,

we use a square neighborhood of 9-by-9 for both local standard deviation and local entropy. The

choice of window size is rather arbitrary but it includes enough of each pixel’s neighborhood in the

computations to capture the local texture. If the window size is too large, it will include pixels too far

away from the center pixel of the window, which in turn may include too much information losing

the locality of the measure. If the window is too small, it will not include enough information and

the computations will be meaningless.

4.1.4 MR8 Filter Bank

Another useful group of texture extraction tools are linear filters. Similar to the local statistics

method (Section 4.1.3), a linear filter is used to extract local textural properties. Therefore, filtering

an image results in a texture image. For every pixel in a given region of interest in the image,

the neighboring pixels of that pixel are used in conjunction with a filter to extract local properties.

A filter is simply a matrix of scalars, which are used as weights in a linear combination of the

pixels neighboring the given pixel. As an example, consider the filter in Figure 4.6 and a matrix

representing an image in Figure 4.7.

For a given pixel, the result of this filtering centered on that pixel is a weighted sum of all the

pixels (including the center pixel itself) in the area, where the filter is superimposed. The scalar

values in the filter are used as weights in this weighted summation. Therefore the value stored in the

corresponding location in the texture image is:
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Figure 4.6: Sample 3-by-3 filter

Figure 4.7: Sample filter used to create the texture image.

3 · 3 + 5 · 4 + 6 · 5− 5 · 8 + 2 · 9 + 4 · 10− 6 · 13− 4 · 14 + 1 · 15 = −42

Filters, much like GLCMs, are used to extract certain textural properties from images. For ex-

ample, if a vertically oriented edge filter is used on an image, then there will be strong responses

in areas of the resulting texture image, which correspond to areas in the original image containing

vertical edges. Figure 4.8 demonstrates how a vertically oriented filter induces strong responses on

certain areas of an image with mostly vertically oriented edges. Note that edges that are less verti-

cally oriented induce weaker responses as seen in the texture image. One can understand how a filter

induces responses by looking at the image of the filter itself. In the vertical edge filter, Figure 4.8,

the bright and dark values indicate weights with higher magnitudes (positive and negative) and the

values surrounding these correspond to weights with diminishing magnitudes. When an area of an

image with a similar pattern as the filter is aligned with the filter, then most of the pixels in the

pattern area are aligned with the heavier weights in the filter. Therefore, the heavier weights cause

the pixel values within the pattern to contribute high amounts to the weighted sum while the smaller

weights cause the areas outside the pattern to contribute minimal amounts. This results in a higher

sum and thus a stronger response. When an area of an image with a dissimilar pattern as the filter

is aligned with the filter, then most of the pattern is aligned with the lighter weights of the filter,

resulting in a smaller weighted sum and therefore, a weaker response.

A filter bank is collection of filters used to create a collection of texture images, which then

can be used as features for classification purposes. Filter banks can extract more complex textural

properties from images than single filters. The Maximum Response 8 (MR8) [61] is a filter bank

that consists of a collection of edge and bar filters with varying scales and orientations, as well as a
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(a) An enlarged view of a 49-by-49 edge fil-
ter

(b)

Figure 4.8: The resulting texture image when a 258-by-258 image is filtered with a vertically ori-
ented 49-by-49 edge filter. Note that areas where edges tend to be somewhat vertically oriented
induce stronger signals.

Gaussian filter and a Laplacian of a Gaussian filter. The MR8 filters are shown in Figure 4.9. The

first three rows of Figure 4.9 consist of edge filters and the next three rows consist of bar filters. The

bottom row shows the Gaussian and the Laplacian of a Gaussian filters. For each group of the edge

or the bar filters in Figure 4.9, filters sharing rows have the same scale, and filters sharing columns

have the same orientation.

Although there are 38 filters in the MR8 filter bank, we only obtain 8 texture images. This is

because in the MR8 filters, for each scale (row in Figure 4.9), only the maximum response produced

by an orientation is recorded for each pixel, hence the term ‘maximum’ in the name of the filter bank.

As a result, 6 texture images are produced from the edge and bar filters, and 2 from the Gaussian

and the Laplacian of a Gaussian filters.

An advantage of the MR8 filter bank is that, due to its use of varying orientations for bar and

edge filters and also its use of the symmetric filters, Gaussian and Laplacian of Gaussian, the filter

bank is rotation invariant. Another advantage of this filter bank is that it is small and efficient since

only 8 texture images are produced. Figure 4.10 shows the resulting texture images from filtering a

FLAIR image with the MR8 filters.
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Figure 4.9: Maximum Response 8 Filter Bank: Rows 1,2 and 3 are edge filters with varying scales
and orientations. Rows 4 to 6 are bar filters with varying scales and orientations. Row 7 contains
the Gaussian and the Laplacian of a Gaussian filters.

4.2 Texture Feature Extraction

As mentioned earlier in Section 3.2.2, we first define a set of brain regions for the purpose of texture

extraction. In this section we describe how the regions of interest are determined and finally how the

extracted textural measurements are combined with other patient information to form the features.

4.2.1 Brain Regions

When examining axial MR images of a brain tumor patient, certain regions of the brain are of

prognostic interest. For example, lack of prominence in the sulci near the edema indicates a higher

malignancy and degree of progression in the tumor since it is indicative of high levels of pressure

under mass effect. Lack of prominence in the sulci farther away from the edema may be even more

dangerous to the patient since this shows extreme levels of pressure caused by the tumor, which can

block blood flow to critical areas of the brain and cause death if not treated immediately.

When comparing the MR image of a healthy brain to one with a malignant tumor, these sulci

under pressure often have a more ‘blurry’ or ‘smudged’ texture characterized with fading edges

and possibly lower contrast and higher homogeneity. These properties can be measured using our

texture extraction tools. Therefore, we define a variety of regions for texture extraction purposes in

order to capture and measure such textural properties in abnormal sulci. We are also interested to

see if there are other textural properties, perhaps pertaining to other areas and tissues in the brain,

that can be of prognostic relevance. For example, are sharp boundaries around the tumorous region
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(a) Raw FLAIR (b) MR8 Texture Images

Figure 4.10: The resulting texture images from filtering a FLAIR image with the MR8 filters. The
first row of the texture images is the result from edge filtering with varying scales, the second row is
bar filtering with varying scales and the last row is the result of filtering with the Gaussian and the
Laplacian of a Gaussian filters.

correlated to survival? Figure 4.11 displays a FLAIR image (original image) and a list of regions

from which we extract textural properties. We now define these brain regions in detail. Note that the

depth for regions border, outer and rim were chosen based on visual inspection so that they include

just enough area from inside the segmented tumor (in border) or the non-tumor tissue in the brain

(outer and rim ) but not too much to dominate the regions.

1. brain: The brain region is obtained by removing the skull, which leaves only the cerebrum.

The purpose for using this region is to investigate if there are any general textural properties

pertaining to the whole brain tissue that can be of prognostic value. Note: The regions that

follow are all sub-regions of the brain region. No skull tissue is included in any of the

regions.

2. inner: The region within the edema (containing the tumor), which is segmented by hand

as mentioned in Section 3.3.2. The purpose for this region is to investigate whether certain

textural properties related to the edema, tumor and the necrotic region (region containing only

dead cells) can be of prognostic value.

3. brain&NOtum: The region obtained by removing the segmented tumor from the brain. The

purpose for this region is to investigate whether possible effects of the tumor on the texture of

the rest of the cerebrum can be of prognostic value.

4. border: The strip containing the border of the segmented tumor, including the outer rim of

the segmented tumor as well as the area immediately outside the tumor. If dmax is defined to

be the maximum depth of the tumor measured from its border in pixel units, then the border
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Figure 4.11: Original MR image on the first row and the brain regions, which we use in texture
extraction. The original image is an axial FLAIR image of a glioblastoma tumor surrounded by
edema.

region is taken to include a distance equal to 40% of dmax inward and 40% of dmax outward

from the border. The purpose of including this region is to see whether a sharp and well

defined border versus a fading one can be of prognostic value.

5. outer: The strip immediately outside of the border of the segmented tumor. If dmax is defined

to be the maximum depth of the tumor measured from its border in pixel units, then the outer

region is taken to include 40% of dmax outward from the border. The purpose for this region

is to see if the texture of the tissue immediately surrounding the tumor, whether it includes

sulci or ventricles or other tissue, can be of prognostic value.

6. rim: The outer rim of the cerebrum or the brain tissue excluding the segmented tumor. If

bmax is defined to be the maximum depth of the brain region measured from its border in

pixel units, then the rim region includes 30% of bmax inward from the border of the brain.
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This region contains the majority of the sulci in the brain and we hypothesize that the texture

of the sulci is of prognostic value.

7. rim&outer: The union of the rim and the outer regions. We would like to see if the texture

of the edges of the soft tissue, which is under the pressure caused by the tumor (i.e. edges of

tissue pushing against the tumor and edges of tissue pushing against the cranium) can be of

prognostic value.

8. ipsirim: The outer rim of the brain that is on the same hemisphere (left versus right) that

contains the tumor. If the tumor is a butterfly glioma, then one side is chosen arbitrarily. This

region contains sucli closest to the tumor and we hypothesize that the texture of this region is

of prognostic value.

9. ipsirim&outer: The union of the ipsirim and the outer regions. We would like to see if the

texture of the edges of the soft tissue, which is under the pressure caused by the tumor, and is

mostly located on the same hemisphere (left versus right) that contains the tumor, can be of

prognostic value.

10. contrarim: The outer rim of the brain that is on the hemisphere (left or right) opposite the

one containing the tumor. This region contains sucli further away from the tumor and we

hypothesize that the texture of this region is of prognostic value.

11. ipsibrain: The full hemisphere of the brain containing the tumor. We would like to see if the

contrast and other textural effects introduced by the tumor on the hemisphere containing it can

be of prognostic value.

12. ipsibrain&NOtum: The ipsibrain region excluding the segmented tumor. This region con-

tains the tissue relatively close to the tumor and since the texture of this region can be affected

by the amount of pressure exerted by the tumor, we hypothesize that its texture is of prognostic

value.

13. contrabrain: The full hemisphere of the brain opposite where the tumor is located. We would

like to see if the textural effects caused by the tumor pushing against the opposite hemisphere

can be of prognostic value.

4.2.2 Feature Construction

This section describes how we use a set of texture extraction tools (Section 4.1) to obtain features

for a set of brain regions (Section 4.2.1). For each brain region, we extract texture information from

basic statics, local statistics, Gray Level Co-occurrence Matrices, and Maximum Response 8 filter

bank as follows. First, let Bi for i = 1, . . . , 13 represent a brain region of a slice of an axial MR

image for a patient. Then the texture feature vector FBi for the brain region is composed of the

following:
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• The basic statistics of mean, standard deviation and entropy calculated on the raw region and

represented by single real values:

{µBi(raw), σBi(raw), HBi(raw)}

• Local entropy, local standard deviation, and each of the MR8 filters produce a texture image

from the raw region. Then for each of these texture images, the basic statistics of mean,

standard deviation and entropy are calculated. This results in (2 + 8) · 3 = 30 single real

values:

{ µBi(localent), σBi(localent), HBi(localent), µBi(localstd), σBi(localstd), HBi(localstd),

µBi(MR1), σBi(MR1), HBi(MR1), . . . , µBi(MR8), σBi(MR8), HBi(MR8)}

• Second order statistics of energy and contrast are computed from GLCMs on the raw region.

As mentioned in Section 4.1.2, since two co-occurrence matrices are constructed (one for

each offset in the neighborhood structure), we arbitrarily choose to take the average of the two

values produced by the second order statistic to obtain one real value. Therefore, we obtain

two more values:

{engBi
, contBi}

4.2.3 Within-Image Region Comparison

Sometimes, it is possible for a tumor mass to deform the appearance of nearby tissue but leave

untouched the tissue farther away. Furthermore, we would like to investigate whether differences in

texture between certain regions inside the same brain image can be of prognostic value. Therefore,

we introduce textural comparisons between regions within the same image.

Let FBi and FBj be texture features obtained for regions i and j as described in the previous

section. Then, the within-image texture comparison features are obtained by taking the component-

wise square of their differences:

FBi,Bj = (FBi − FBj )
·2 (4.7)

= [(FBi(1)− FBj (1))2, . . . , (FBi(n)− FBj (n))2] (4.8)

where n is the total number of features in the feature vector. We hypothesize that the difference

in texture between the sulci closer to the tumor and the sulci further away from the tumor is of

prognostic value. We also hypothesize that the difference in texture between the tissue closer to the

tumor and the tissue further away is of prognostic value. The regions we have chosen to be compared

against each other are:

• inner-vs-outer

• inner-vs-brain&NOtum

• brain-vs-brain&NOtum
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• ipsibrain-vs-contrabrain

• ipsibrain&NOtum-vs-contrabrain

• ipsirim&outer-vs-contrarim

• ipsirim-vs-contrarim

Here, inner-vs-outer, inner-vs-brain&NOtum, brain-vs-brain&NOtum and ipsibrain-vs-contrabrain

represent differences in texture between healthy tissue and areas containing tumorous tissue. Addi-

tionally, the feature, ipsibrain-vs-contrabrain along with ipsibrain&NOtum-vs-contrabrain,

ipsirim&outer-vs-contrarim and ipsirim-vs-contrarim represent the differences in texture between

the tissue located on different hemispheres. Moreover, ipsirim&outer-vs-contrarim and ipsirim-vs-contrarim

represent the differences in texture between the edges of soft tissue (including the sulci) affected by

the pressure from the tumor.

4.2.4 Slice Selection

As mentioned earlier, each MRI volume has 19 to 22 axial slices of the brain. A tumor usually spans

across many slices. Texture extraction from every slice of a patient repeated over all patients can

be computationally intensive and thus time consuming and unnecessary. So it is helpful to wisely

select a few slices to represent each patient. In order to ensure that the slice selection is not biased by

human interference towards specifically choosing slices that may seem to improve performance, we

decided to only consider methods that use generic automatic measurements. We experimented with

different ways of selecting slices such as choosing the slices with the largest tumor area, or slices

containing the middle section of the tumor, or slices that contain the upper and the lower sections of

the tumor. But we finally decided to choose, for each scan, the slice that contains the largest area of

the segmented tumor, together with the slice immediately above and the slice immediately below.

Once a set of three slices are selected for a patient, texture features (as described in Chapter 3)

are extracted on each slice. This results in three slice-specific texture features Fbelow, Flargesttum

and Fabove. We define the final texture feature vector F for a patient as the vector containing the

component-wise maximum of the three slice-specific texture features:

F = max{Fbelow, Flargesttum, Fabove}
(4.9)

= [max{Fbelow(1), Flargesttum(1), Fabove(1)}, . . . ,max{Fbelow(m), Flargesttum(m), Fabove(m)}]
(4.10)

where m is the total number of texture features. We experimented with minimum and average

vectors as well, but we chose the maximum vector as it produced better results.
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4.2.5 Inclusion of Non-texture Features

Along with texture features, we also include some other patient specific information in each patient’s

feature vector. These include age, sex, and general tumor properties such as tumor volume, mass

center invade and maximum diameter of the tumor. To compute the tumor volume, we use the

total number of pixels making up the tumor across all the slices in FLAIR volume. To compute

the maximum diameter, we use Principal Component Analysis (PCA). The tumor (spanning across

multiple slices) is treated as a three dimensional object. The longest diameter of this object is the

diameter parallel to the pricipal component of the object obtained by the PCA method. Mass center

invade is a measure of invasion through corpus callosum by the tumor and is performed on all three

slices. For each slice, it is the percentage of tumor mass that invades the hemisphere that is opposite

of where the center mass of the tumor is located. In cases, where there is a full butterfly appearance

(the tumor is symmetric across the center line), this invasion is 50%. Once this measure is obtained

for all three slices that have been selected as described in Section 4.2.4, their maximum is used as

the mass center invade feature.

We use these features as clinical data for the patients and to compare how our prognosis per-

forms using texture features with or in comparison with these clinical features. As mentioned in

Section 3.3, age and sex are the only raw clinical data in our dataset.

4.3 Classification

Given a feature vector for each patient, the goal of our prognosis method is to predict a survival cat-

egory for the patient. The label for each patient is the number of weeks to date of death (if known).

We label each right-censored patient with the minimum time period for survival in weeks. In order

to define categories of survival, we use the finite mixture-models implementation of Expectation

Maximization (EM) [14] to find clusters of patients according to their survivals (both known and

right-censored survivals combined). Figure 4.12 shows the histogram of the survivals and the dis-

tribution mixtures produced by the EM method. Based on the result of EM clustering, we choose

two categories of survivals, and the cutoff is set at 30 weeks. Therefore, patients who have passed

away before 30 weeks from their scan date are included in the low survival category (a total of 25

patients), and the patients who live longer than 30 weeks are included in the high survival category

(a total of 30 patients). Note that with this categorization, all the right-censored patients are included

in the long survival category.

As discussed in Section 2.2, censored data pose a particular challenge when determining survival

categories. For two or more survival categories, if the label of a right-censored patient happens to be

in a category other than the longest survival category, then this patient is usually removed from the

dataset [13]. This is because the label of a right-censored patient determines the last time the patient

was known to be alive and so whether the patient died at that date or lived longer is undetermined.
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Figure 4.12: Histogram for patient survivals for all the patients, including both known and the right-
censored survivals. Distribution mixtures produced by finite mixture-models (Expectation Maxi-
mization) determine two clusters.

As a result, if the label of a right-censored patient falls in a survival category other than the longest

survival category, then one cannot assume that the patient died thus belonging to that category,

nor can one assume that the patient survived long enough to be included in the longest surviving

category. Therefore, the patient needs to be removed. In our case, all the right-censored patients fall

in the longest surviving category. Therefore, we do not need to deal with this challenge.

Now, given a set of features for each patient, we use his/her survival category as the classifi-

cation label in a binary classification. For our binary classifier, we use a C4.5 decision tree with

pruning [47] implemented in Weka [64]. However, since each feature vector has 700 features, we

use a feature selection scheme implemented in Weka called Correlation-based Feature Subset Se-

lection [19]. It chooses a subset of the features where each feature is highly correlated with the class

label while between-feature correlations are low. A resulting decision tree from a C4.5 model is

intuitive and similar to Recursive Partitioning Analysis trees (Section 2.2). However, there are many

other powerful classifying schemes commonly used for outcome prediction. According to Cruz and

Wishart [10], aside from decision trees, some of the most widely used machine learning schemes in

cancer prediction are Naive Bayes, Neural Networks and Support Vector Machines.

4.4 Summary

As described in the previous sections, we consider 13 regions for each brain MR slice image. For

each brain region Bi, we compute a total of 35 texture features in its texture feature vector, FBi .
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Also, we have 7 within-image region comparisons, each producing a texture difference vector of

length 35. Therefore, each brain MR slice image will be represented by a complete texture feature

vector F , which is the combination of all the FBi for i = 1, . . . , 13 in addition to 7 within-image

texture comparison vectors for a total of 35 · 13 + 35 · 7 = 700 texture based features.

To be able to conveniently refer to certain texture features in our feature vector, we adopt the

following naming scheme for each feature:

texture extraction method - first order or second order statistic - region

For example, glcm-eng-inner represents the texture feature value obtained from extracting GLCMs

on the inner region using the second order statistic energy. As another example, localent-std-border

represents the texture feature value obtained by extracting the local entropy on the border region

using the first order statistic, standard deviation.

For each patient, three slices are considered and the complete texture feature vectors are com-

puted for each slice. Then maximum values across the slices are chosen to form the final texture

feature vector for a patient. Additionally, 5 non-texture features are included to form the final feature

vector for each patient. Therefore, each patient has a feature vector of length 705. Then our learner

uses a feature selection method to reduce the total number features before building a classifier. The

complete feature extraction process is visualized in Figure 4.13. Once the features are extracted,

then the learning process follows, as demonstrated in Figure 4.14.
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Figure 4.13: The complete feature extraction process for each patient. The image features are
combined with age and sex to form a patient’s feature vector for use in classification.
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Figure 4.14: The complete classification process. First, a feature selection method is used to reduce
the number of features used in learning. Then the features and the labels in the training set are used
to build a classifier. Then this classifier is used to predict the label for a new patient.
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Chapter 5

Results and Discussion

In this chapter we use our full prognosis framework as laid out in the previous chapters for survival

prediction. In Section 5.1, we describe the evaluation measures we use in our evaluation scheme,

cross-fold validation, which we describe in Section 5.2, for assessing the performance of our progno-

sis framework. Then, we test the performance on the data introduced in Section 3.3 using cross-fold

validation and the evaluation measures discussed in Section 5.1. Finally, we display the results and

comparisons in Section 5.3 and Section 5.4 and follow up with discussions in Section 5.5.

5.1 Evaluation Measures

For a given binary classifier model, we define its accuracy to be the proportion of correctly classified

instances out of all instances. A perfect classification would be 100%. An accuracy of 50% would

be considered the worst performance, since it would be equivalent to a classifier that ignores the

training data and assigns class labels randomly at a flip of a fair coin. Accuracy, however, is not

always sufficient to truly assess performance. Consider using a binary classifier to predict the labels

of a set of data that has an imbalanced class distribution, e.g. where there are 90 instances of class

A and 10 instances of class B. A trivial classifier model, which always predicts a label of A for

every instance, would achieve an accuracy of 90% on this imbalanced dataset. But this classifier

can hardly be considered useful. Therefore, in addition to accuracy, we use other measures to fully

assess the prediction power of a binary classifier.

A confusion matrix (contingency table) is commonly used to encode the classification distribu-

tion of a classifying model. The confusion matrix for a binary classifier, which is built to predict

positive instances (as opposed to negative instances) in a dataset, is a 2-by-2 table as shown in Ta-

ble 5.1. Each row in this table represents the true labels and each column represents the labels

predicted by the binary classifier. TPs is the total number of True Positive instances (i.e. positive

instances that were correctly classified as positives); TNs is the total number of True Negative in-

stances (i.e. negative instances that were correctly classified as negatives); FNs is the total number of

False Negatives (i.e. positive instances that were incorrectly classified as negatives); and FPs is the
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Classified as: Positive Negative
Positive TPs FNs
Negative FPs TNs

Table 5.1: Generic confusion matrix. TPs: Positive instances correctly classified as positive. FNs:
Positive instances falsely classified as negative. FPs: Negative instances falsely classified as positive.
TNs: Negative instances correctly classified as negative.

Classified as: Positive Negative
Positive 8 2
Negative 8 82

Table 5.2: Confusion matrix example: low precision, high accuracy and high recall.

total number of False Positives (i.e. negative instances that were incorrectly classified as positives).

The sum of each row in Table 5.1 is the total number of instances in the class that is represented by

the row. The sum of the diagonals (TPs + TNs) is the total number of correctly classified instances.

Precision, recall and the F-measure are also commonly used to assess how well instances of

each class are classified by the classifier.

Precision:
TPs

TPs + FPs
(5.1)

Recall:
TPs

TPs + FNs
(5.2)

F-measure:
2 · recall · precision
recall + precision

=
2 · TPs

2 · TPs + FPs + FNs
(5.3)

Precision is the proportion of correctly classified positive instances out of all instances that were

classified as positive. In other words, precision is the proportion of instances classified as positive

that are actually positive instances. A classifier can have high accuracy, but poor precision. Consider

a case where there are 10 positive instances and 90 negative instances in a dataset. Assume that a

binary classifier results in the confusion matrix in Table 5.2. Here, the accuracy for this classifier is

90%, whereas its precision is 50%. Recall is the proportion of correctly classified positive instances

out of all positive instances. In other words, recall is the proportion of positive instances that were

correctly classified. In the case in Table 5.2, recall is 80%, which is quite high. Assume in another

dataset, we get the confusion matrix show in Table 5.3. Here, recall is 50%, despite the fact that both

precision and accuracy are high. F-measure is a performance measure that combines precision and

recall, assigning equal importance to both measures. In fact, F-measure is the harmonic mean of

precision and recall, assigning equal weight to both measures. The best possible F-measure is 1 and

the worst is 0. For example, the F-measure for the classifier in Table 5.2 is 0.62 and the F-measure

for the classifier in Table 5.3 is 0.67.
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Classified as: Positive Negative
Positive 5 5
Negative 0 90

Table 5.3: Confusion matrix example: low recall, high accuracy and high precision.

In the case of our prognosis framework, which has two classes of low and high survival cat-

egories, we can treat either class as the positive class and then assess the resulting values for the

measures precision, recall and the F-measure for that class.

5.2 Evaluation Schemes

Thus far, we have discussed evaluation measures commonly used for performance assessment. Now,

we describe evaluation schemes, which use the discussed measures to produce reliable assessments

and estimations of the prediction accuracy for a given machine learning model.

To test the predictive power of our prediction model, we must use an evaluation scheme that

does not provide an overly optimistic assessment. With a small dataset such as ours, over-training is

an important issue that we need to deal with. Over-training may occur when the classifier model fits

the collection of training data too well producing misleading results. The main goal of a prediction

scheme is to be able to correctly classify new data. Too often a classifier model is considered

accurate when it was tested only on the same data on which it was trained [13]. A true assessment

of a classifier is achieved when it is tested on previously unseen data. Over-training can be detected

when a classifier, which obtains accurate results when tested on the training data, performs poorer

on new test data than another apparently worse classifier. Therefore, the process of testing on new

data is a requirement for an evaluation scheme to be considered reliable.

Dupuy and Simon [13] state that many outcome prediction studies in microarray analysis make

the mistake of testing their prediction model on data that was used in building the model. This issue

renders many results reported in such studies useless and unreliable. Another common mistake,

according to [13], is the misplaced use of feature selection during the evaluation process. In many

studies, relevant features are selected based on the whole dataset first. Then, the prediction model

is trained on a subset of the data, then tested on another subset. Although the model is tested on

presumably new data, the process of feature selection was performed on the whole dataset, including

the test set, and therefore, the evaluation result may be too optimistic. Evaluation of a prediction

model cannot be reliable if any part of the test data was involved in building the prediction model.

There are quite a few reliable evaluation schemes commonly used to test the performance of

machine learning models. However, they differ in their levels of rigor. The simplest scheme is split-

sample (hold-out) validation. A percentage of the dataset is set aside for training and the rest for

testing. The classifier model, including feature selection as well as learning, is built on the training
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set. Then the prediction power of the classifier is tested on the test set using the performance mea-

sures discussed earlier. Data may be randomly sampled for each split. A model can also be built

on a dataset from one institution, and then tested on data from a different institution. However, this

evaluation process may still produce misleading results, since the training set may not be representa-

tive. To overcome this representation problem, one may repeat the hold-out procedure several times,

each time choosing a set of random samples for training and the rest for testing. The accuracy for

each hold-out repetition is recorded and at the end the average of the accuracy values is reported.

A more rigorous and reliable evaluation scheme is cross-validation. In k-fold cross-validation,

the set of patients is divided into k disjoint sets (folds) of equal size. For each i = 1, . . . , k, fold i

is set aside, then the rest of the dataset is used as the training set to build the classifier model (this

includes feature selection as well). Then, fold i is used as the test set. This process is repeated

for all folds. Note that for each fold, the feature selection scheme may choose a different set of

features in building the classifier. There are two ways to report the accuracy of a classifier using

k-fold cross-validation. One way is to record the accuracy reported for testing on each fold and at

the end report the average and standard deviation across all the folds. This way of reporting the

k-fold cross-validation results tells us how robust a prediction model is, since the validation model

uses several test sets within the dataset. Another way to report the performance uses the fact that in

cross-validation, each instance is used in some fold as a test instance exactly once. Consequently,

each instance is classified exactly once. Therefore, the predicted labels can be used to produce a

confusion matrix, which is based on the whole dataset.

For both split-sample and cross-validation schemes, the training and the test data may be chosen

via stratification. Stratification is when the proportions of the classes in the whole dataset are pre-

served in each split (fold). For example, if 40% of a dataset belongs to class A and the rest to class

B, then a randomly sampled subset used for training should contain 40% class A instances and the

rest class B instances. This way, the training set is representative of the whole dataset.

5.3 Survival Prediction Results

In this section we describe the results of our survival prediction framework on our dataset of patients.

As mentioned earlier, we use a C4.5 decision tree with pruning [47] using Correlation-based Feature

Subset Selection. We describe each of our 55 patients with a feature vector of length 705, which

contains both texture features (based on FLAIR images) and non-texture features. Each patient

belongs to either the low survival (S1) category or the high survival (S2) category.

5.3.1 Decision Tree

The pruned decision tree resulting from the C4.5 algorithm run on the whole dataset is shown in Fig-

ure 5.1. Based on this tree, the texture features, mr7-entropy-contrarim, mr3-std-inner-vs-brain&NOtum

and mr7-entropy-rim are predictive of survival categories. When tested on the whole dataset, this
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Figure 5.1: Pruned C4.5 decision tree built on the whole dataset for survival prediction

model misclassifies 3 low survival patients as high survival patients; see the bottom right leaf –

Figure 5.1.

The mr7-entropy-contrarim feature is the entropy of the Gaussian filter responses in the FLAIR

image computed over (essentially) the sulci region on the hemisphere opposite the one containing

the tumor. This is a measure of “blurriness” of the sucli further away from the tumor. The feature

mr7-entropy-contrarim is the entropy of the Gaussian filter responses computed over the entire outer

rim of the cerebrum, where all the sulci are located. The feature mr3-std-inner-vs-brain&NOtum is

the difference in variation of edge filter responses between the region within the tumor and the rest

of the brain tissue. Figure 5.2 displays texture images for patients that are extreme cases with respect

to these three texture features. A “ * ” next to the feature value of a patient indicates that the patient

received the highest value for that feature amongst all the other patients and a “ v ” indicates the

lowest value for the feature amongst all the other patients.

Patient a is an S1 patient, whose mr7-entropy-contrarim and mr3-entropy-rim values were the

highest over all patients. Patient b is also an S1 patient, whose mr7-entropy-contrarim value was

the lowest over all patients. Patient c is an S2 patient, whose mr3-std-inner-vs-brain&NOtum value

was the highest over all patients. Patient d is an S1 patient, whose mr3-std-inner-vs-brain&NOtum

and mr7-entropy-contrarim values were the lowest over all patients. Using these feature values, our

decision tree in Figure 5.1 correctly classifies these patients.

5.3.2 Cross-Validation

We chose k = 10 in our k-fold cross validation and sampled the folds with stratification. The results

of our survival prediction model for 10-fold cross validation are displayed in Table 5.4.
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Figure 5.2: Extreme cases for each feature in the decision tree in Figure 5.1. A “ * ” indi-
cates the highest feature value amongst all patients and a “ v ” indicates the lowest. Since the
mr3-std-inner-vs-brain&NOtum feature is a within-image comparison feature of the two regions,
inner and brain&NOtum, we display the texture images for both features.

This produced an accuracy of 80%, which may seem high. But the classifier had a more dif-

ficult time correctly classifying patients with low survivals, since 7 out of 18 low survival patients

were misclassified as high survival patients. Hence, this results in a lower recall value (0.72) and

consequently, a lower F-measure (0.766) for the class of low survivals.

The standard deviation of the accuracies across all 10 folds is 19.69. This high standard deviation

indicates that our prediction model is far from robust. A prediction model is robust only if it can

maintain high levels of accuracy with low variations when tested on any given datasets. In fact, our

model obtained accuracies as low as 50% on one fold in the cross-validation.

Table 5.7 shows the mid-slice FLAIR image and the slices below and above for every patient

that was classified as S1 in our 10-fold cross validation test. Table 5.8 shows the mid-slice FLAIR

image and the slices below and above for every patient that was classified as S2 in our 10-fold

cross validation test. Misclassified patients are labeled in both Table 5.7 and Table 5.8. Note that

extreme-case patient a in Figure 5.2 is patient 6 in Table 5.7. Extreme-case patient b is patient 7 in

Table 5.8, which is listed as misclassified in the 10-fold cross validation test. Note that this patient

is correctly classified by the decision tree that was built on the whole data, whereas the decision tree

that misclassified this patient in 10-fold cross validation was built on part of the data. Extreme-case

patient c in Figure 5.2 is patient 22 in Table 5.8 and extreme-case patient d is patient 12 in Table 5.7.
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Correctly Classified 44/55 80 %
Classified as: S1 S2
S1 = Low Survival 18 7
S2 = High Survival 4 26

Class Precision Recall F-Measure
Low Survival 0.818 0.72 0.766
High Survival 0.788 0.867 0.825

Table 5.4: Prediction results for 10-fold cross validation.

Correctly Classified 40/55 72.7 %
Classified as: S1 S2
S1 = Low Survival 16 9
S2 = High Survival 6 24

Class Precision Recall F-Measure
Low Survival 0.727 0.64 0.681
High Survival 0.727 0.8 0.762

Table 5.5: Prediction results for 10-fold cross validation with SVM as the classifier.

5.3.3 Decision Tree versus Support Vector Machine

Now we test the predictive power of our decision tree algorithm against another powerful classifica-

tion algorithm called the Support Vector Machine (SVM) [45]. We keep the feature extraction and

the feature selection part of our framework the same as before, but we replace the C4.5 decision tree

learner with an SVM learner. The 10-fold cross validation results for our SVM classifier are shown

in Table 5.5. Our SVM classifier achieves an accuracy of 72.7%. Based on the training data, an SVM

classifier assigns weights to every feature, which can be indicative of the significance of the feature

in predicting class labels. The weights assigned to the features by the SVM are shown below. Note

that these features were the only ones chosen by our feature selection algorithm (Correlation-based

Feature Subset Selection [19]), and thus were the only features considered by our SVM classifier:

2.2718 ∗ (normalized) mr8-entropy-inner-vs-outer

- 1.2373 ∗ (normalized) mr7-mean-ipsirim&outer-vs-contrarim

- 1.0634 ∗ (normalized) mr3-mean-ipsibrain&NOtum

- 1.025 ∗ (normalized) maxdiam

- 1.0065 ∗ (normalized) mr7-entropy-contrarim

+ 0.913 ∗ (normalized) mr3-entropy-inner-vs-brain&NOtum

+ 0.8868 ∗ (normalized) mr3-entropy-brain-vs-brain&NOtum

+ 0.7998 ∗ (normalized) mr7-mean-inner-vs-brain&NOtum
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+ 0.1668 ∗ (normalized) mr3-mean-inner-vs-brain&NOtum

- 0.0656 ∗ (normalized) mr3-std-inner-vs-brain&NOtum

+ 0.043 ∗ (normalized) mr7-entropy-rim

+ 0.2232

The SVM classifier has assigned the highest weight to the texture feature, mr8-entropy-inner-vs-outer.

The texture feature, mr7-entropy-contrarim, which was chosen as the first node by our C4.5 deci-

sion tree, has been assigned a relatively high weight by the SVM, as well. However, the non-texture

feature, maximum diameter, has been assigned a higher weight than mr7-entropy-contrarim.

Our SVM classifier can achieve an accuracy of 72.7% in 10-fold cross validation, which seems to

be lower than the accuracy achieved by our C4.5 decision tree classifier (80%). However, to confirm

that our C4.5 decision tree performs statistically significantly better than our SVM classifier, we

compare the results by performing 10-fold cross validation over 10 runs, where on each run, the

data is randomly partitioned into stratified folds (so that the folds are different for each run). The

average accuracy of our C4.5 decision tree classifier in 10 runs of 10-fold cross validation tests is

79.2% (std 17.55) and the average accuracy of our SVM classifier is 63.9 (std 20.15). Our decision

tree significantly outperforms our SVM (paired t-test, p < 0.05).

5.3.4 Kaplan Meier Plots

In the process of designing stratified clinical trials, researchers often use the Kaplan-Meier Product-

Limit method, usually with the logrank test, to verify that risk groups obtained by the RPA method,

or any other statistical method, are statistically significantly different. Here we show that our de-

cision tree survival prediction framework can produce survival groups that are statistically signifi-

cantly different. Figure 5.3 shows the Kaplan-Meier plots for the patients that were predicted to be

low-survival (S1) and patients predicted to be high-survival (S2). The plots are based on the 10-fold

cross validation results in Section 5.3.2. The logrank test indicates that the difference between the

two plots is significant (p = 0.00118).

5.4 Standardized Texture Image Statistics

Here we slightly modify our prognosis model in the texture extraction phase. When we look at

the texture images produced by the local statistics and the maximum response fitlers (MR8) (as

described in Section 4.1), we notice that the texture response values are not intuitive. In other words,

the units for these responses are not known and it is not possible to tell whether a given response

value, on its own, should be considered high or low. For example, what does a value of 1.0537 really

mean for mr3-std-inner-vs-brain&NOtum, in Figure 5.1? One way to make these response values

intuitive is to consider their values with respect to all the other values in the same image. Since

every region described in Section 4.2.1 is a sub-region of the brain region, we can perform texture
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Figure 5.3: Kaplan-Meier plots of the predicted S1 and predicted S2 labels. The plots are based on
the 10-fold cross validation results in Section 5.3.2

extraction on the full brain region first, then standardize the resulting brain texture image and finally

proceed with computing basic statistics on the specified sub-region of interest. To standardize the

brain texture image, T = (tij), each pixel, tij , in the brain region is converted to a standard score

value, zij , by subtracting the mean of the brain region and then dividing by the standard deviation

of the brain region:

Standard Score: zij =
tij − µbrain region

σbrain region
(5.4)

Note that we only use the mean and standard deviation of the brain region rather than the full im-

age, since the full image contains many background pixels, which are irrelevant to our computations.

Standardization re-adjusts the mean and standard deviation of the brain region in the texture image

to 0 and 1 respectively. Thus, the resulting standard scores in the texture image are without dimen-

sion, and the units are now in the number of standard deviations a score is apart from the mean of

the brain region. This slight modification and the original diagram from Figure 3.6 ( Section 3.2.2)

are shown in Figure 5.4.

There are a few points we need to address before we continue to the experimental results. First,

note that the brain region itself is one of the regions used in feature extraction. It would not make

sense to standardize the brain region if the whole brain region is to be used to compute basic statis-

tics. This way, the resulting basic statistics measures of mean and standard deviation would always

be 0 and 1 for every slice of the patient’s FLAIR volume. Therefore, we apply this standardization

step for every region described in Section 4.2.1, except for the brain region.
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Figure 5.4: A modification to the texture extraction methods that produce texture images. Before
basic statistics are computed on a sub-region of the brain region, texture extraction is performed on
the whole brain region first, then the resulting brain texture image is standardized.

Secondly, note that this standardization step does not change the results for the basic statistics

measure of entropy, as described in Section 4.1.1, since entropy deals with the shape of a distribution

and is not affected by standardization. Finally, the co-occurrence matrices obtained for the GLCM

features are already normalized to obtain probability values as described in (Section 4.1.2), and

much like standard scores, probability is without dimension. Therefore, we use the second order

statistic features obtained from co-occurrence matrices as before. We refer to this modified model

as survival prediction with standardized texture images. The following sections describe the results

of testing this model on our data.

5.4.1 Decision Tree

The pruned decision tree obtained based on the whole data is shown in Figure 5.5. Similar to the

original survival prediction model, the texture feature mr7-entropy-contrarim is the most predictive

feature for survival categories. Note that even though this is a feature built using a texture image

(maximum response Gaussian filtered image), since the basic statistics measure of entropy is used,

the standardization step does not affect the texture responses. Therefore, the root node of the tree

in Figure 5.5 and the splitting value of 3.2487 are exactly the same as the decision tree (Figure 5.1)

built with the original model. When tested on the whole data, this model misclassifies only 1 patient,

who was predicted to have a high survival but really has a low survival.

5.4.2 Cross-Validation

The results of the modified survival prediction model with standardized texture images for 10-

fold cross validation are displayed in Table 5.6. The modified model achieves a worse accuracy

of 65.45%, while misclassifying 36% of the low survival patients. As a result, this model has a low
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Figure 5.5: C4.5 decision tree built on the whole dataset for survival prediction with standardized
texture images.

recall value for the class of low survival patients. The standard deviation of the accuracies across

all 10 folds for the modified model is 18.07 and the highest accuracy achieved on a fold is 83.3%.

Even though the additional standardization process made the texture image features more intuitive,

it degraded the performance of our prediction model.

5.5 Discussion

According to the cross-validation results with the C4.5 decision tree classifier, both the original pre-

diction model and the modified version with standardized texture images misclassify too many low

survival patients as high survival patients. The original C4.5 model performs somewhat better with

a higher recall for the low survival category. As there are 25 low survival patients as opposed to 30

high survival patients, there are fewer low survival patients to train the model on. Deciding which

patients should belong to the low survival category and which ones belong to the high survival cat-

egory can be a subjective matter. If we had raised the cut-off time above 30 weeks, we could have

had more low survival patients. However, we wanted to divide our set of patients into survival cate-

gories in a meaningful manner. Therefore, we used mixture models to find a meaningful cut-off time

in our data as demonstrated in Figure 4.12. Our original C4.5 decision tree classifier significantly

outperformed our SVM classifier. SVMs are powerful classifiers, however, the C4.5 decision tree
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Correctly Classified 36/55 65.45 %
Classified as: S1 S2
S1 = Low Survival 16 9
S2 = High Survival 10 20

Class Precision Recall F-Measure
Low Survival 0.615 0.64 0.627
High Survival 0.69 0.667 0.678

Table 5.6: Prediction results for 10-fold cross validation. The model is the modified model with
standardized texture images.

classifier is easier to understand by clinicians and performs better in our case.

Out of 705 features, our decision tree models chose the texture feature mr7-entropy-contrarim

as the most predictive feature for survival. This feature is built by measuring the entropy of the

contrarim region, which is passed through a Gaussian filter. This may imply that the blurriness

of the sulci located on the hemisphere opposite the one containing the tumor is predictive of the

patient’s survival. Parameters such as age, maximum diameter and mass center invasion, which

are commonly used by clinicians in prognosis assessment were not chosen by our decision tree

prediction model. However, maximum diameter was a significant feature when the classifier was an

SVM.

Figure 5.6 shows the distributions of the non-texture parameters in our data. As the figure shows,

very high values in both maximum diameter and mass center invasion are indicative of low survival

categories. A mass center invasion of 40% and higher is indicative of a butterfly glioma, which,

as expected, corresponds to low survival. However, neither of these two features were chosen by

our decision tree as the texture features were more significant predictors. In our data, as shown

in Figure 5.6 and Figure 5.7, age does not correlate well with survival. In fact, the correlation

coefficient between age and survival (in weeks) is −0.2252. However, this is not representative

of much larger datasets since according to many studies, age is the most predictive parameter for

survival in malignant brain tumors (see Section 2.1).

And finally, second-order statistical features based on GLCMs, although popular in the litera-

ture for segmentation and recognition tasks on MRI, do not exhibit much predictive power in our

framework. The linear filtering MR8 features are the main features that are chosen by our feature

selection method. This means that, out of all the features considered, the MR8 features have the

highest correlation with patient survival in our database.
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Figure 5.6: Distribution of non-texture parameters in our data. The distribution of maximum diam-
eter and mass center invasion indicate that very high values correspond to low survival times.

Figure 5.7: Distribution of age in our dataset and the line of best fit. Many population studies
indicate that there is a high negative correlation between age and survival time. However, in our
dataset, a correlation coefficient of −0.2252 indicates that there is very little correlation between
age and survival time. Moreover, both low-survival (S1, i.e. below 30 weeks) and high-survival (S2,
i.e. above 30 weeks) patients in our dataset appear to be scattered uniformly over a wide age range.
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Table 5.7: The mid-slice and the slices below and above for every patient
predicted to be in S1 in the 10-fold cross validation test.
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Table 5.7: (continued)
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Table 5.7: (continued)
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Table 5.7: (continued)

Table 5.8: The mid-slice and the slices below and above for every patient
predicted to be in S2 in the 10-fold cross validation test.
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Table 5.8: (continued)
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Table 5.8: (continued)
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Table 5.8: (continued)
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Table 5.8: (continued)
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Chapter 6

Conclusion

6.1 Challenges and Future Work

Our original database contained volumes of different modalities: T1, T1-contrast, T2 and FLAIR.

However, in choosing useful modalities for our work, we encountered two problems. First, in most

post-surgical volumes, the tumor has been partially removed, completely or has been tampered with,

introducing artifacts in the image. For our work, we wanted to use images with tumors completely

intact. Therefore, we only looked for pre-surgical volumes. The second problem was that not all

patients had all four modalities for their pre-surgical scans in our database. In fact, the total number

of patients who had pre-surgical T1 , T1-contrast or T2 modalities was too small. On one hand, if we

wanted to use a range of modalities, we would have to use a smaller number of patients. On the other

hand, if we wanted to include more patients, we would have to use fewer modalities. Eventually,

we decided to use more patients at the expense of using only one modality. In fact, most patients

had pre-surgical FLAIRs and therefore, we decided to use only FLAIR volumes for our current

study. For future studies, we can definitely obtain more patients to augment our current dataset, and

also include more modalities. The inclusion of T1-contrast images can definitely improve survival

prediction because, as discussed in Chapter 2, contrast enhancing is an important factor in prognosis

of glioblastomas. Our database also lacked many clinical information such as KPS and extent of

surgery about the patients. We suspect that including these parameters in survival prediction will

improve prediction because these parameters have been found to be the most significant predictive

factors in prognosis, as we learned in Chapter 2. A preliminary study by members in our group has

shown that survival prediction can reach very high accuracies when clinical data and image-based

information are combined.

For each texture analysis method in our framework, it is intuitive as to what they individually

measure in an image. For example, the second-order statistic, contrast, as indicated by its name,

measures the contrast in an image, and an edge filter induces strong response in areas of the image

that resemble an edge. However, when these texture analysis methods are combined together with

different statistical operations, such as entropy, computed over different brain regions in an elaborate
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framework, the intuitive meaning can be easily lost. It is quite difficult to explain to a clinician what

a decision tree that has mr3-std-inner-vs-brain&NOtum as a node can do. Therefore, instead of using

the raw texture features, as we do in our framework, to build a decision tree, we can try to use the

texture analysis methods to build clinically intuitive features explicitly, such as “sucli clarity”, and

then use these features to build the decision tree. For example, we can use second-order statistics

with a Gaussian filter on the sulci region of the brain to build one feature, called “sulci clarity”,

and then use this feature to build our decision tree. Here, the challenge would be to fine-tune these

intuitive features to correlate with the judgment of a clinician.

Also, as another future direction, to make our prediction framework more practical to clinical

applications, we can extend our prediction framework to multi-class or even regression-based frame-

work. As a preliminary study prior to this work, we did experiment with regression. However, the

prediction results were very poor probably because our dataset was small. Any regression analysis

on this type of data needs to deal with censored observations from the dataset. Patients whose exact

dates of death are not known are problematic in regression analysis (this differs from classification

tasks, where we do not need to remove a censored patient if this patient happens to fall into the long

survival class). Therefore, regression analysis with survival data is much more challenging, which is

precisely why methods like Recursive Partitioning Analysis and Kaplan-Meier estimators have been

developed specifically for survival analysis.

6.2 Contributions and Concluding Remarks

Our goal was to use image-based textural information for prognosis of glioblastoma in a way that

helps predict patient survival. Earlier studies in clinical trials and prognosis of glioblastoma have

used tumor size as the only image-based feature. The framework in this thesis extracts textural fea-

tures from pre-defined brain regions on FLAIR images and uses them to predict a patient’s survival

class. Based on 10-fold cross validation, our prediction framework can achieve an average accuracy

of 80%. Therefore, we have shown that textural information about glioblastomas can be predic-

tive of patient survival. Our framework also outputs a decision tree, which is an intuitive means

of classification, and therefore, can be more easily applied by clinicians. We also showed, using

Kaplan-Meier plots and the logrank test, that our decision tree survival prediction framework can

produce significantly different survival groups, which can be useful in designing stratified clinical

trials. However, our results show that our framework is not completely robust. Therefore, more

work needs to be done in finding more powerful feature extraction methods that can yield a robust

prediction system, which in turn can be reliably applied to prognosis by clinicians.
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